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This is centered around my notes and notes from Craig Burnside’s Macro I course, which is largely based
on the Stokey&Lucas and Ljungqvist&Sargent texts. My notes from Greg Givens’ Macro I course were also
invaluable and used to help provide more context, intuition, and guidance on structuring and notation.

My formatting for these notes may be a bit too cumbersome for some readers; with the exception of the Dy-
namic Programming section, there is generally limited spacing/headings. This was developed as a reference
for myself, so the linear structuring and compact delivery of content was what I felt like would best keep me
in the "flow of logic/learning/retention" after trial and error in several Macro courses. Also, it should be
noted that the sections are meant to be read chronologically, as some of the content/intuition is nested.

Also, I will keep an index/list/dictionary of abbreviations that I did not define explicitly.
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1 Solow

Properties: We don’t specify preferences (instead use ’ad hoc’ specifications), discrete time (t = 1, 2, . . . )
with one infinitely-existing, single-member household and one consumption good

Economy: Production is given by yt = F (kt, ht). We assume that this function is CRTS and increas-
ing in both inputs with diminishing marginal returns. Since both inputs are positive, we consider their
marginal products to be infinite at 0 and 0 at infinity (in the limit).

Constraints: We have a resource constraint and an evolution of capital equation

ct + it = yt and kt+1 = (1− δ)kt + it

’Ad Hoc’ Investment: Normalize by ht = 1, so yt = f(kt). We assume that no matter what the economy
produces, we will invest a fixed share, in other words it = sf(kt). This implies that ct = (1− s)f(kt).

Steady State (s.s): Let k denote steady state value (kt = kt+1). From evolution of capital equation,
the steady state yields the implied condition that sf(k) = δk. This means capital is depreciating at the
exact rate its being invested in. This gives strong implications for the evolution of capital.

Transition Dynamics: Consider a graph of kt+1 vs kt, where we plot the capital evolution equation as
well as kt+1 = kt (45◦ line). Given the 45◦ line is a formalization of the steady state definition, it intersects
the evolution of capital equation at the s.s. If the economy is investing more than the value of depreciated
capital, then kt+1 > kt. If the opposite is true, the inequality sign is flipped. This relates directly to capital’s
relationship with the s.s. Given k0 > 0, capital converges monotonically towards the steady state.
_ Proof: Consider the case where k0 < k

g(kt) = sf(kt) + (1− δ)kt =⇒ g′(kt) = sf ′(kt) + (1− δ) > 0

Note by Euler’s theorem and CRTS f(kt) = F (kt, 1) = 1·Fh(kt, 1)+ktFk(kt, 1) > ktf
′(kt) since Fh(kt, 1) > 0.

=⇒ 1 > δ =
sf(kt)

kt
> sf ′(kt) =⇒ ktf

′(kt)− f(kt) < 0 and g′(kt) = sf ′(kt) + 1− δ < 1

So g′(·) is strictly positive and bounded above. Thus by fundamental theorem of calculus

k1 − k = g(k0)− g(k) = −
∫ k

k0

g′(x)dx < −
∫ k

k0

1dx < 0

also note
d

dkt

f(kt)

kt
= k2

t (ktf
′(kt)− f(kt)) < 0 =⇒ k1 − k0

k0
=
sf(k0)

k0
− δ > sf(k)

k
− δ = 0

since k0 < k and we have a decreasing function. So k1 ∈ (k0, k) and by induction kt+1 ∈ (kt, k) �.
This idea is furthered by considering a quantification of the intertemporal growth rate of capital:
γ = kk+1−kt

kt
= sf(kt)

kt
− δ =⇒ ∂γ

∂kt
= s

kt
(ktf

′(kt)− f(kt)) = −s
kt
Fh < 0 (by Euler’s theorem).

This implies that capital accumulation slows the larger a capital stock is

Golden Rule: The golden rule level is what savings rate will yield the largest steady state of consumption.
While preferences aren’t specified, we assume that on balance having more to consume means more utility.
So we can find the golden rule rate by defining steady state consumption and other terms as function (of s)

c(s) = f(k(s))− δk(s) =⇒ ∂c

∂s
= (fk(k(s))− δ)∂k

∂s

We make this into a F.O.C since we want to maximize. Focusing on the differenced term

0 = (fk(k(s))− δ)∂k
∂s

=⇒ kGR = f−1
k (δ) =⇒ sGR =

δkGR

f(kGR)

Consider the locus of points, f(kt)− δkt, derived from imposing the steady state in the equation for ct, then
reintroducing the time subscripts. Then ct = (1− sGR)f(kt) intersects this locus at (kGR, cGR), its apex.
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2 Small, Open Econ Neoclassical

2.1 w/ Exogenous Income
Properties: In this version, there is no capital and income (yt) is treated as known for all time periods and
given/exogenous, as in the actions of the population do not affect the resources available to consume (could
think of it like fruit falling from a tree). Households can have some control over their intertemporal income
by borrowing in a "zero coupon" bond market, where the rest of the world (ROW) can be counted on to
supply demand. The sequence of bond prices {qt} is also exogenous and known. We also assume that in
this model that households have "time preferences", in that they care more about present day consumption
than consuming in the future. To formalize this, we consider β ∈ (0, 1) as the preference, with β = 1

1+ρ and
the closer β is to zero, the more the HH prefers consuming today over future periods.

Constraints: Notationally, let bt+1 be the number of bonds purchased at time t. This is because we
consider them paying off one unit of consumption good at time t + 1, but purchased at a cost of qt (per
bond) at time t. More explicitly, the resources gained from bonds bought at time t is the per-bond payoff
(which is 1, in consumption-good units) multiplied by the number of bonds purchased (bt+1), yielding a
payoff of 1 · bt+1 in time t + 1. The cost is similarly derived as the per-bond price (qt) multiplied by the
number of bonds purchased at time t (bt+1), so the cost incurred from bond buying at time t is qt · bt+1. So
in period t, the HH has bt + yt as income (the exogenous income stream plus the payoff from the bonds it
purchased in the previous period) and the costs incurred are what it consumes plus the bonds it is purchasing
in period t (ct + qt · bt+1). Thinking of bonds as a saving mechanism, it should be obvious that resources
gained in period t must be equivalent to resources spent. Thus, ct + qtbt+1 = yt + bt. To further emphasize
bonds as a means of saving, we can think of the rate of return on bonds (interest rate) as the size of the
difference between bond payout and bond price relative to price, giving rt = 1−qt

qt
= q−1

t − 1. Then define
b̃t+1 ≡ qtbt+1, which yields a more precise constraint of

ct + b̃t+1 = yt + (1 + rt−1)̃bt

Note that b̃t represents net foreign assets, −(̃bt+1−b̃t) is the capital account balance, and rt−1b̃t = (1−qt−1)bt
is income from the ROW. So the budget constraint gives a nice visualization of the current account balance
(yt + rt−1b̃t − ct) being equal to the capital account balance. We also need to consider something called the
"no-ponzi" condition, formed the idea that the household will want to borrow infinitely if left unrestrained.
Obviously, this is infeasible from a practical perspective because lenders would incur huge debts that would
never be repaid. So to induce feasibility in the bond-market, the no-ponzi condition we will consider here is
limt→∞ qtbt ≥ 0, which the household will select as 0 to expend all of its resources.

Economy: We assume lifetime utility is
∑∞
t=0 β

tu(ct). We assume that the utility function is increas-
ing with diminishing marginal returns and an infinite marginal product when consumption approaches 0.
The household takes the initial endowment of bonds (b0) as given and makes choices for the sequence of
{ct, bt+1} in order to maximize lifetime utility. This is formalized in the usual Lagrangian paradigm by

L =

∞∑
t=0

βtu(ct) +

∞∑
t=0

λt(yt + bt − ct − qtbt+1)

Take F.O.C’s for the choice variables and the Lagrange multiplier. Scrolling forward the F.O.C for ct then
substituting into the F.O.C for bonds yields the Euler equation

qt = β
uc(ct+1)

uc(ct)
=⇒ 1 + ρ

1 + rt
=
uc(ct+1)

uc(ct)

∴ intertemporal marginal rate of substitution ≡ relative price, in time t units, of consuming one unit at t+ 1

Transition Dynamics: We can derive some intuition from the second optimally condition. If rt = ρ,
uc(ct) = uc(ct+1) =⇒ ct = ct+1. If rt > ρ, uc(ct) > uc(ct+1) =⇒ ct < ct+1, or qualitatively the
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household has a stronger incentive to save. If rt < ρ, then quantitatively and practically the opposite holds.
Notice that the path/changes consumption takes are not affected by income level. But deeper investigation
reveals that the present value of current and future income does affect the level of consumption. To see
this, consider the special case where rt = r = ρ =⇒ q = β and ct = c. Then the period 0 B.C is
c0+qb1 = y0+b0 =⇒ c0+qc1+q2b2 = y0+qy1+b0 =⇒ · · · =⇒

∑∞
t=0 q

tct =
∑∞
t=0 q

tyt+b0 by substituting
for bonds and the non-ponzi condition. Imposing our special case we have c = (1 − q)

∑∞
t=0 q

tyt + b0. So
essentially, the agent just "annuitizes" (divies up equally) the present value of lifetime resources. There is
not a nice closed form solution for non-constant interest rates, but the intuition is the same. We can also get
some insight into the nature of intertemporal consumption substitution by performing a first order Taylor
expansion (we will assume equality) about the steady state and rt = ρ

uc(c)+ucc(ct−c) = uc(c)+ucc(c)(ct+1−c)+
1

1 + ρ
uc(c)(rt−ρ) =⇒ ucc(c)

uc(c)
(ct−c) =

ucc(c)

uc(c)
(ct+1−c)+

1

1 + ρ
(rt−p)

Let x̂t = xt−x
x and σ = −ucc(c)·c

uc(c)
denote the coefficient of relative risk aversion. Then

ucc(c) · c
uc(c)

ĉt =
ucc(c) · c
uc(c)

ĉt+1 +
ρ

1 + ρ
r̂t =⇒ ĉt+1 − ĉt = σ−1 · ρ

1 + ρ
r̂t

When the nominal interest rate is above ρ, the household is incentivized to save and the LHS (and obviously
RHS) is greater than zero. But what’s the mechanism for this? σ is essentially a scaling factor; the larger it
is the less they are willing to intertermporally substitute.

2.2 w/ Production
Properties/Updated Constraints: Now capital is included. We still assume no leisure and normalize by
ht = 1 and have a bond market in place. Thus, the new BC is ct + kt+1 − (1− δ)kt + qtbt+1 = f(kt) + bt.

Economy: Now the HH has an additional choice variable: tomorrow’s capital. Otherwise the problem
is the same with an updated budget constraint:

L =

∞∑
t=0

βtu(ct) +

∞∑
t=0

λt(f(kt) + (1− δ)kt − kt+1 − ct − qtbt+1 + bt)

The FOCs yield the same optimality condition of qt = β uc(ct+1)
uc(ct)

. The FOC with respect to kt+1 for the
lifetime constraint gives the rate of return to capital between t and t + 1. So also get the condition that
q−1
t − 1 = rt = fk(kt+1) − δ (return on bonds equals return on capital), and if interest rates are constant
the economy jumps straight into a steady state. This implies that local preferences don’t affect the optimal
level of capital. This is because capital is guided by an implicit "no-arbitrage" condition: it’s return can’t
differ from the return on bonds at equilibrium. If it was at a larger steady state capital level, HH would sell
capital to finance bonds. At a lesser steady state, it would borrow to acquire more capital since at the level
capital has a higher return than it costs to borrow. With respect to a special case that rt = r = ρ, define
the corresponding level of capital by kNM = f−1

k (ρ + δ). Since the marginal product of capital is higher at
lower values of k (and ρ > 0), we know that kNM < kGR. We can also work through this differently/more
explicitly: similarly to the exogenous income model, this special case yields constant bond prices and the
budget constraint can be written as an infinite sum as in 2.1 (

∑∞
t=0 q

t(ct + it) =
∑∞
t=0 q

tyt + b0). Given that
ct + it = c+ δk for t > 0 because ct, kt+1 are constant ∀t, this leads to

1

1− q
(c+ qδk − qf(k)) = f(k0) + b0 + (1− δ)k0 − k

Solving for c and taking a FOC yields kNM, showing that the golden rule is not the optimal choice. However,
if you do not take the initial level of capital as given, you would get the golden rule.
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Transition Dynamics Consider again rt = r = ρ. Also impose that k0 = kNM. Thus yt = yNM =
f(kNM) and it = iNM = (δ − 1)kNM + kNM = δkNM. Reusing the above summation process for the budget
constraint and taking limits to infinity, the no-ponzi condition implies c = cNM = f(kNM)− δkNM. To assess
intertemporal affect, suppose instead k0 < kNM. So the economy jumps to a steady state at t = 1. So
f(k0) < yNM and i0 = kNM + (1− δ)k0 > kNM > iNM. Recall that we impose that ct = c (even at period 0).
Therefore, the budget constraint summation process from earlier yields

c =
q

1− q
(yNM− c− iNM) +y0− c0 = qcNM + (1− q)(y0− i0) = cNM + (1− q)[(y0−yNM)− (i0− iNM)] < cNM

So because the HH had less income in period 0, it had to invest more to jump to kNM, leaving less lifetime
resources to annuitize consumption. The same jump happens if k0 > kNM. One may raise a question of why
a HH would not try to reach the golden rule level of consumption by jumping to the golden rule capital. This
is again because of the implicit no-arbitrage condition. Recall that the return to capital is fk(kt+1)−δ. Since
fk(kGR) = δ, the return to capital in this case is 0, which is less than our case of r = ρ. The consequence of
this is that if k0 ≥ kGR, the HH can attain c > cNM

_ Proof: Assume k0 = kGR and b0 = 0. Then consumption and capital are at a steady state for t ≥ 1.
So referencing the BC summation analysis from above we see that

1

1− q
(c+ q(δk − f(k))) = (1− δ)kGR − k + f(kGR)

Think of this as the first equation. Now separately, impose that k and c are at the golden rule

1

1− q
(cGR + q(δkGR − f(kGR))) = (1− δ)kGR − kGR + f(kGR)

Now multiplying by 1− q and taking the difference between the first and second equations

c− cGR = qf(k)− qδk − (1− q)k − qf(kGR) + qδkGR + (1− q)kGR

The RHS has diminishing marginal returns in k (concave), so we maximize the difference by solving the
FOC qfk(k) = qδ+ 1− q. This yeilds f−1

k (δ+ q−1 − 1), in other words kNM. Since c− cGR is obviously 0 at
the golden rule, we must have cNM − cGR > 0.
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3 Dynamic Programming

Prelude/Intuition
Our goal with dynamic programming is to be able to represent an infinite problem compactly (using time-
invariant notation). We will build to this structure by formulating the social planning problem using an
approach which emphasizes the number periods between relevant "events", then arrive at the point where
we can remove the subscripts using some math and new concepts (e.g. Bellman equations and envelope
conditions). Again assume the usual properties for resources/utility/production: CRTS, normalizing by ht =
1,limit conditions, increasing with diminishing returns, and ct + kt+1 − (1− δ)kt = f(k). Now also consider
the function g(k) ≡ f(k)+(1−δ)k for simplicity. Note that the case where g(kt) = kt+1 is the instance where
all resources are allocated to investment, so this is a ceiling on the next periods capital (with 0 being a floor).
Solving for consumption, the social planning problem becomes max{kt+1}∞t=0

∑∞
t=0 β

tu[g(kt)− kt+1], subject
to the aforementioned bound on capital, positive consumption, and an initial endowment of capital. The FOC
for tomorrows capital yields the Euler equation with slightly modified notation: uc(g(kt)−kt+1)

uc(g(kt+1)−kt+2) = βgk(kt+1).
Now consider a period t = T . We can define the social planner’s decision at any time period using notation
with respect to T . If we consider T to be the "final period", then obviously we will want to have used
all the economy’s resources by the end, meaning kT+1 = 0. If we begin to start from the end (from this
condition) and work backwards, this is known as a recursive solution. Now, define the object that we
are maximizing in each period as the objective function, and the objective function at the optimum as
the value function. Define the value function at n periods away from t = T by vn(·). Similarly, define
the function which returns optimal choice of capital n periods away from T by hn(·), known as the policy
function. So per previous discussion, h0(kT ) = kT+1 = 0. Thus, the value function at the terminal date is

v0(kT ) = max
kT+1

u[g(kT )− h0(kT )] = u[g(kT )]

Now consider the planner’s decision at T − 1, which is

max
kT ,kT+1

u[g(kT−1)− kT ] + βu[g(kT )− kT+1] ≡ max
kT
{u[g(kT−1)− kT ] + βmax

kT+1

u[g(kT )− kT+1]}

subject to the aforementioned constraints on capital. Note this is v1(kT−1). Also note that v0(kT ) appears
in the RHS of the expression. Therefore this gives us

v1(kT−1) = max
kT

u[g(kT−1)− kT ] + βv0(kT )

Consider doing this for v2(kT−2); the same substitution opportunity exists. Therefore, we can generalize
this approach by

vs(kT−s) = max
kT−s+1

u[g(kT−s)− kT−s+1] + βvs−1(kT−s+1)

with a sequence of optimal capital stocks generated by k1 = hT (k0), . . . , kT+1 = 0 = h0(kT ) = h0(h1(kT−1))

Recursive, Time-Invariant Structure
Now we have arrived at an ability to describe the optimal choice of capital irregardless of the period t.
Therefore, we can remove the time subscripts from notation and place the emphasis on the given level of
capital, considering that we will know what capital we have at the beginning of each period. This is useful
for transitioning back into an environment with no terminal date. Let x be the realization of x "today", x′
be the realization tomorrow, x′′ the realization the day after, and so on. Thus, we conjecture that there is
a "timeless optimization", and this gives us the following Bellman equation:

v(k) = max
k′

u[g(k)− k′] + βv(k′)

General Form: v(x) = max
x′∈Γ(x)

F (x, x′) + βv(x′) (1)
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subject to 0 ≤ k′ ≤ g(k) and k′ = h(k), for our specific case. However, we still haven’t formally proved
that the value function we described exists. Moreover, we haven’t proven the existence and uniqueness of
the policy function. As stated earlier, the policy function for capital provides a mapping of today’s capital
to the optimal choice for tomorrow. We conjecture that the policy function is continuous, single-valued,
strictly increasing, will always be less(more) than the steady state if the input is less(more) than the steady
state, returns the steady state at the steady state, and limits to 0 as k → 0 from the right. This also allows
for the formulation of a single-valued and continuous policy function for present day consumption, given
by c(k) = g(k) − h(k), which also has the same limit property. However, we need to establish that all this
actually holds. Specifically, one may wonder how can we guarantee convergence of the function; that it holds
as an "infinite"/timeless principle when all we know is the initial information. Our previous analysis was
based on the fact that we ended at "T", but that is not how high-level problems are designed. We will do
this by formulating parameters for a general dynamic programming problem and then applying it.

General Dynamic Optimization
Now we are thinking in a purely mathematical sense, not even thinking of an "economy" or even what the
variables in our system mean. Consider the problem max

{xt+1}∞t=0

∑∞
t=0 F (xt, xt+1) such that xt+1 ∈ Γ(xt), with

x0 given. This gives us an equivalent dynamic programming problem of v(x) = max
y∈Γ(x)

F (x, y) + βv(y). In

order to conform to some of the paradigms of necessary theorems, we need to define an operator. We consider
a function, for example, as a mapping f : Rn → Rn. An operation maps a function to a function, in other
words a function in some space to another, possibly the same, space (e.g. T : F → F). Our operator of
choice is defined by, given some function w, w = T (w). We also notationally say w = Tw when the functional
equation reaches a "fixed" or optimal point; you could consider this a quasi-steady state for the function
when it can’t be "refined" any further. Then we can write the Bellman equation as a functional equation,
something that is defined over a function instead of points in a space, such as

(Tw)(x) ≡ max
y∈Γ(x)

F (x, y) + βw(y) (2)

Where w for the Bellman we are interested in eventually being this fixed point and our value function. But
we still have more work to do to leave conjecture land.

Assumptions
We need to make further assumptions to arrive at our goals, which we will denote (A#). Define a feasible
sequence of plans. given x0, by Π(x0) = {{xt} : xt+1 ∈ Γ(xt) ∀ t > 0}. Let A = {(x, y) ∈ X ×X|y ∈ Γ(x)}.

(A1) - Γ(x) is nonempty ∀x ∈ X
(A2) - X is a convex subset of Rl, and Γ : X → X is nonempty, compact-valued, and continuous.
(A3) - F : A→ R is bounded and continuous
(A4) - ∀x0 ∈ X andx ∈ Π(x0), u(x) ≡ lim

n→∞

∑n
t=∞ βtF (xt, xt+1),exists (could be infinite limit).

(A5) - F is strictly concave.
(A6) - (convexity) x, x′ ∈ X, y ∈ Γ(x), y′ ∈ Γ(x′), andλ ∈ [0, 1] =⇒ λy + (1− λ)y′ ∈ Γ[λx(1− λ)x′]
(A7) - (monotonicity) x ≤ x′ =⇒ Γ(x) ⊆ Γ(x′).
(A8) - For each y, Fx(x, y) > 0
(A9) - F is continuously differentiable on Int(A).

If we want all results we will show simultaneously, we can simply assume they all hold, but we will specify
later what results require which assumptions. Before we go delving into the results, let’s consider some
context about what these assumptions mean in the context of our problem and why they’re necessary. Note
that the Γ(·) correspondence is going to be [0, g(k)]. The Heine-Borel tells us a set in the reals is compact iff
it’s closed and bounded. So this immediately should make the assumptions we made for the correspondence
seem extremely reasonable. Further, remembering that F (·) is analogous to the utility function, those func-
tional assumptions should also seem extremely non-restrictive, given ones that have already been and will
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be asserted about the utility function throughout this document and in Macro PhD courses in general.

Notationally, this can get a bit messy because some assumptions and results are stated much cleaner with
time subscripts. So just keep any mind x and y are proxies for xt andxt+1 in our case, but they are more
general objects related both being in a set X and by a "policy" correspondence where the realization of x
affects the possible values y can take on. Another complication is the "general" vs "specific" forms of the
value and policy functions. There will be a ·∗ to refer to the non-recursive formulations, discussed at length
in the next section, and also some notation to separate the general case vs. our case. For example, V (x) for
a general functional equation and v(x), from (1), when thinking of what we want specifically to correspond
to the Bellman equation and using H for the most general case, π when we apply it to the value function
we want, and h when we talk about capital.

Equivalence to Sequence Problem
The traditional, non-recursive, solution in the social planning paradigm can be thought of as a sequence
problem (SP), where we pick an infinite sequence of values of capital, given an initial point. The functional
equation (FE) solution says that we can instead just decompose the problem into two parts: maximization
today and the maximization problem we will face tomorrow. Obviously if you go down the "rabbit hole", you
will see that tomorrow’s maximization problem includes the day after, and so on. So it should make sense
that these two formulations are equivalent. To see this mathematically, consider the following example. Let
V ∗(k0) =

∑∞
t=0 β

tU(k∗t , k
∗
t+1) be the sequence problem solution from the given k0, where k∗t is the optimal

value of capital at date t that we would observe in the SP. Note how the subscript on the input for the
solution matches the beginning date of the summation. Then,

V ∗(k0) = U(k0, k
∗
1)+βU(k∗1 , k

∗
2)+· · · = U(k0, k

∗
1)+

∞∑
t=1

βtU(k∗t , k
∗
t+1) = U(k0, k

∗
1)+β

∞∑
t=1

βt−1U(k∗t , k
∗
t+1) = U(k0, k

∗
1)+βV ∗(k1)

So it should follow how our operator T will be at a fixed point for our correct Bellman equation. Our policy
function can then be defined as the value of tomorrow’s capital that satisfies this Bellman equation, and is thus
corresponds to the t+1 element of the SP solution. Some, including Dr. Burnside, may criticize the structur-
ing, seen in Stokey&Lucas and here, of discussing the SP equivalence to the recursive formulation because we
haven’t formally established the existence of the value function. However, when we reference the SP example
above, it should be obvious that the value function exists and we should have some intuitive understanding
of what it is. Further, in my view, the issue of equivalence takes precedent over the issue of uniqueness.
Finally, recall the terms SP and FE and note the equation numbering. We will state some "theorems" that
will be delineated by their result. Keep in mind the general definition: V ∗(x0) =

∑∞
t=0 β

tF (x∗t , x
∗
t+1)

(Equivalence of Values) Given A1-A4, then for any x ∈ X, any solution to the SP (V ∗(x)) is also a
solution to the to the FE, and any solution v(x), from (1), to the FE is a solution to the SP, so that
V ∗(x) = v(x) ∀x ∈ X.

Recall Π(x0), a feasible sequence of plans. Say x∗ ∈ Π(x0) attains V ∗(x0) in the SP if it achieves an
equal value of (discounted) lifetime utility.
(Attaining Optimality) Given A1-A4 and x∗ ∈ Π(x0) that attains V ∗(x0) in the SP, then for x∗t ∈x∗,
V ∗(x∗t ) = F (x∗t , x

∗
t+1) + βV ∗(x∗t+1). Also, a x∗ ∈ Π(x0) satisfying V ∗(x∗t ) attains V ∗(x0) in the SP.

Another way to tackle this: let v∗(x0) ≡ sup
x∈Π(x0)

lim
n→∞

∑n
t=0 β

tF (xt, xt+1) be a modified version of the SP.

Given A1, A4, and lim
n→∞

βnv(xn) = 0 ∀x ∈ Π(x0), v∗ is a solution to sup
y∈Γ(x)

F (x, y) + βv(y). Further,

given A1 and A4 and the supposition that a solution exists, any plan that is optimal (attains the sup)
can be generated from the the policy correspondence H∗(x) = {y ∈ Γ(x)|v∗(x) = F (x, y) + βv∗(y)}. Yet
will still don’t know if the plan to attain this supremum solution is feasible. So note that given a feasible
plan x∗ ∈ Π(x0) that satisfies the SP for all t and that lim

t→∞
βtv(x∗t ) = 0, then x∗ attains the supremum.

As mentioned, we need some more math to pin down the uniqueness of the solution and the value function.
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Math Background
Now we will define some more mathematical principles to get to some important notation/results. A metric
space is a set S and a function (metric) ρ : S × S → R such that ρ(f, g) ≥ 0 ∀ f, g ∈ S (equality holds iff
f = g), ρ(f, g) = ρ(g, f), and the triangle inequality holds (ρ(f, h) ≤ ρ(f, g) + ρ(g, h) ∀ f, g, h ∈ S). Define
a zero-element (θ) of a set S by f + θ = f and multiplication by the scalar 0 equivalent to the zero vector.
A normed vector space is a set S and a function norm || · || : S → R such that ||f || ≥ 0 ∀ f ∈ S (equality
holds iff f = θ), ||αf || = |α|||f || ∀ f ∈ S, α ∈ R, and ||f + g|| ≤ ||f || + ||g|| ∀ f, g ∈ S. For the next few
definitions, assume (S, ρ) is a metric space. {fn}∞n=0 (fn ∈ S ∀n) is convergent sequence (to f) if for every
ε > 0 ∃N(ε) s.t ρ(fn, f) < ε ∀n ≥ N(ε). A Cauchy sequence is an equivalent way of specifying convergence
in R, and more generally is defined by an N(ε) (for a given ε > 0) satisfying ρ(fn, fm) < ε ∀n,m ≥ N(ε).
A metric space is complete if every Cauchy sequence in S is a convergent sequence in S. Let (S, ρ) be a
complete metric space and T : S → S, then T is a contraction mapping with modulus β if there exists
β ∈ [0, 1) such that ρ(Tf, Tg) ≤ βρ(f, g) ∀f, g ∈ S. Also note that for notation, the usual inequality rela-
tions with respect to functions, f ≥ g if f(x) ≥ g(x) ∀x ∈ X. Finally, let C(X) be the space of bounded
continuous functions on X and C ′(X) be the space of bounded, continuous, and concave functions. Now we
can state the results which collectively say something about our problem of interest

Theorem of the Maximum Assume x ∈ X ⊆ Rl, y ∈ Y ⊆ Rm, f : X × Y → R continuous, and
Γ : X → Y compact valued and continuous. Define generalized value and policy set

V (x) = max
y∈Γ(x)

F (x, y) and H(x) = {y ∈ Γ(x)|f(x, y) = V (x)}

Then V (x) is continuous and H(x) is non-empty, compact-valued, and upper hemi-continuous 1 (UHC).

Blackwell’s Theorem∗ Let T : F → F be an operator defined on the metric space w.r.t F and the sup
norm. Assume that T satisfies (monotonicity) f ≥ g =⇒ Tf ≥ Tg and (discounting) ∀f ∈ F and c ∈ R+,
∃β ∈ [0, 1) s.t T (f + c) ≤ Tf + βc. Then T is a contraction mapping with modulus β

Contraction Mapping Theorem∗ Given a contraction mapping T : S → S with modulus β, if (S, ρ)
is a complete metric space, then there is a unique point f ∈ S s.t Tf = f and for any f0 ∈ S, the infinite
sequence governed by fn = Tfn−1 satisfies ρ(fn, f) ≤ βn(f0, f) ∀n.

Immediate Application to Value and Policy Functions
Now we can consider applications that leave the generalized paradigm. Recall (2), our operator of choice.
Blackwell’s theorem, which we can invoke because the Theorem of the Max tells us T maps a continuous
function to a continuous function (T : C(X) → C(X)), implies T is a contraction mapping. Then, the
Contraction Mapping Theorem says given our operator T any guess of a value function v0 ∈ C(X), we
get a sequence of value functions (vn = Tvn−1) that limit to the optimal "fixed point" that was referenced
a few sections ago. We can also define vn = Tnv0. Then, given A2 and A3, our T has a unique fixed
point v and for any initial guess v0 ∈ C(X), ||vn − v|| ≤ βn||v0 − v||. Given our boundedness assumptions,
the RHS limits to 0 as n → ∞, so vn → v. We have also shown that the policy correspondence, defined
as the set of "future values" that are both feasible and satisfy the aforementioned fixed point, is compact
and upper hemi-continuous. The rest of this subsection will be more formally stating and listing these results.

(Existence/Uniqueness of Value Function)Given A2 and A3, the operator from (2), T : C(X)→ C(X),
has a unique fixed point v ∈ C(X). And for any v0 ∈ C(X) , ||Tnv0 − v||| ≤ βn||v0 − v|| and the (specific)
optimal policy correspondence, π(x) = {y ∈ Γ(x)|v(x) = F (x, y) + βv(y)} is compact valued and UHC.

Recall the Sequence Problem vs. Functional Equation section, and some of the notation introduced in
it. Namely, the FE formulation and feasible plans Π(x0). Then, implicitly using some of the theorems and
math results we have discussed, we can state some highly relevant results a bit more concisely

1given a and open neighborhood V of G(a) for a correspondence G : A→ B, ∃ a neighborhood U s.t ∀x ∈ U,G(x) ⊂ V
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(Existence of Solutions) Given A1-A4,then there exists a unique and continuous bounded function
v : X → R satisfying (2), the FE. Moreover, for any x0 ∈ X, an optimal plan x∗ ∈ Π(x0) exists

(Concavity of the Value Function) Given A1-A6, then the aforementioned unique v that satisfies the
FE is strictly concave.

(Monotonicity of Value Function) Given A1-A4, A7, and A8, the the unique v satisfying the FE is
strictly increasing in all of its arguments

(Social Planning Envelope Theorem∗) Given A2,A3,A5,A6,and A9, if x0 ∈ Int(X) andh(x0) ∈ Int(X),
then v is continuously differentiable at x0 with vx(x0) = Fx[x0, h(x0)].

(Existence of Optimal Policy Function) Given A1-A6, then there exists a unique optimal plan x∗ ∈
Π(x0) satisfying the FE for any x0 ∈ X. Moreover the optimal plan can be expressed via π : X → X, a
continuous policy function such as π(x∗t+1) = x∗t+1

(Form of Policy Function) Given A2,A3,A5, and A6, we the aforementioned policy correspondence
π(x) = {y ∈ Γ(x)|v(x) = F (x, y) + βv(y)} is single-valued and continuous. Since this means its a set with
one element, it can be re-written by π(x) = argmax

y∈Γ(x)

F (x, y) + βv(y)

(Convergence to Policy Function) Recall vn = Tvn−1. Let πn = argmax
y∈Γ(x)

F (x, y) + βvn(y). If v satisfies

the FE, then given A2,A3,A5, and A6, πn → π

Deeper Policy Function Application:
Returning to our problem, using capital and consumption, the optimal policy function for capital is h(k) = k′.
We have shown under relevant assumptions, the policy function is single-valued and continuous. We also
want to have a policy function that is increasing and limits to the steady state both above and below (i.e
if the input is below/above the steady state then the function returns something larger/smaller). Further,
the monotonicity combined with the limiting conditions (approaching 0 and∞), we know that a graphing of
the policy function against k will cross the 45◦ line at some point, meaning the policy function satisfies the
steady state (k∗ = h(k∗)). First, under regularity conditions guaranteeing the FOC solution is in Int([0, k])
for some k ∈ R, then we have uc[g(k) − h(k)] = βvk[h(k)]. Let k0 and k1 be feasible values of capital such
that k1 > k0. We will prove h(k1) > h(k0) by contradiction. Assume to the contrary. Then by the strict
concavity of u and v

uc[g(k)− h(k)] = βvk[h(k)] ≤ βvk[h(k1)] = uc[g(k1)− h(k1)] =⇒ g(k0)− h(k0) ≥ g(k1)− h(k1)

So since we assumed h(k0) > h(k1), the last inequality implies g(k0) > g(k1), which is a contradiction of the
prior knowledge that g is strictly increasing. Next we will show the limit/trend conditions (with respect to
the steady state). The strict concavity of v implies for any feasible k, we have [k−h(k)]{vk(k)−vk[h(k)]} ≤ 0.
By the Euler and envelope equations, this implies [k − h(k)][uc(c)gk(k) − β−1uc(c)] ≤ 0. uc(·) is strictly
positive, so [k − (h(k)][gk(k) − β−1] < 0 for k 6= h(k) because gk(k∗) = β−1. Since g is concave, k∗ >
k =⇒ gk(k) − β−1 > 0, so combining the last two inequalities k∗ > k =⇒ h(k) > k. The oppo-
site holds when k∗ < k. So now we have shown the global stability of the policy function: given a feasible
starting capital, capital approaches the steady state from above if it starts above and below if it starts below.

We can similarly show that this implies the policy function for consumption has some similar proper-
ties. Let k0 < k1 and define the policy function for consumption by c(k) = g(k) − h(k). Then from
g(k0) − h(k0) ≤ g(k1) − h(k1) above (remember we did a proof by contradiction) and the concavity of
the utility function, we have c(k0) < c(k1). We can also see this from this concavity of the value func-
tion, and then extrapolate the result from a combination of the Euler, envelope, and concavity of the
utility functions. Thus k0 < k1 =⇒ c(k0) < c(k1), so the policy function for consumption is increas-
ing. We also have the same global stability conditions, but the poof is not quite as intuitive. First,
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define A(k) = uc[c(k)] andβA(k)gk(k); these correspond to both sides of the Euler equation. Note that
k < k∗ =⇒ A(k) < B(k) since this also implies gk(k) > β−1, and the opposite holds for k > k∗.
The derivative of these objects are Ak(k) = ucc[c(k)]ck(k) andBk(k) = βAk(k)gk(k) + βA(k)gkk(k), so
Ak(k),Bk(k) < 0. Therefore we know the original objects are strictly positive and decreasing. Further
the Euler equation implies that A(k0) = B(k1) for optimality. Consider a graph of A(k),B(k) against
capital. First, think about the k0 < k1 case. The y values will be equivalent (visualize a horizontal line)
at the point at which the line k = k0 intersects A(k) and the line k = k1 intersects B(k). So obviously,
to get the next value of A(k), you go down the k = k1 until you hit the A(k) line, then travel horizon-
tally (on the line A(k1)) to get the next value of B(k). If we do this process for every value of k, going
from the A(k) curve to A(k), you will continue to "hit a wall", until you reach the steady state and can-
not travel vertically down from the B(k) line because you are already on the other curve. More simply:
k0 < k∗ =⇒ kt ≤ kt+1 ≤ k∗. The dynamics are flipped when k0 starts above the steady state, so we have
the opposite: k0 > k∗ =⇒ kt ≥ kt+1 ≥ k∗. Since the derivative of the policy function for capital is strictly
positive, we also have k0 < k∗ =⇒ ct ≤ ct+1 ≤ c∗ and k0 > k∗ =⇒ ct ≥ ct+1 ≥ c∗

Transversality Condition
This is a part of a sufficient condition for an optimal plan. If a plan satisfies both the transversality condition
plus the Euler equation, then it is an optimal plan (the converse is not necessarily true). Given A2,A3, A5,
A8,A9, X ⊂ Rl+, and x∗t+1 ∈ Int Γ[x∗t ] (∀t) the plan is optimal if it satisfies

Fy(x∗t , x
∗
t+1) + βFx(x∗t+1, x

∗
t+2) = 0 and lim

t→∞
βtFx(x∗t , x

∗
t+1) · x∗t = 0

,where the second equality is the transversality equation and the first is the combination of the Euler and
envelope condition. We can think about this condition in the context of the phase diagrams: we must satisfy
the FOCs and ensure that there will not be a "blow up" either in marginal utility or consumption value.

Ljungqvist-Sargent Approach
Instead of substituting out capital, which is the "Stokey&Lucas" method described in earlier sections, the
"L-S" method includes all variables, separating them into categorizations of control and state. In the simple
case, we can consider today’s capital a state variable (this is what we take as given at period 0) and
today’s consumption as the control. Along with a policy function for consumption, this gives the form
v(k) = max

c
u(c) + βv(k′) = max

c
u(c(k)) + βv(g(k)− c(k)). Assuming differentiability, this yields

vk(k) = uc[c(k)]ck(k) + βvk[g(k)− c(k)][gk(k)− ck(k)]

= {uc[c(k)]− βvk[g(k)− c(k)]}ck(k) + βvk[g(k)− c(k)]gk(k)

However, from the relevant Euler equation uc(c) = βvk[g(k) − c], the term on the left and therefore this
implies that vk(k) = βvk[g(k)−c(k)]gk(k) = uc(c)gk(k). Note that this approach doesn’t have an "envelope"
condition, but we arrive at an equivalent result anyway.

L-S Envelope Condition∗: This is more precisely the Benveniste-Scheinkman formula, which is an aca-
demic formalization of the envelope theorem. Make standard assumptions2 like the ones for the more simple
envelope conditions, and impose that π(·, ·) = x′ is a more generalized policy function (i.e takes on more
inputs), and we have a policy function for a second variable (q(x) = u, which is analogous to consumption).
Then

V (x) = max
u
{F (x, u) + βV

[
π(x, u)

]
} =⇒ V ′(x) =

∂F
[
x, q(x)

]
∂x

+ β
∂π
[
x, q(x)

]
∂x

V ′
[
π
(
x, q(x)

)]
The result stems from the cancellation of relevant terms as a result of the FOC:

∂F (x, u)

∂u
+ βV ′

[
π(x, u)

]∂π(x, u)

∂u
= 0

2See here for a formal proof
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4 Closed Econ Neoclassical Model

Properties and Constraints: This model assumes a closed economy and closed economy. Since the econ-
omy is closed, the bond market does not have the ROW to supply demand, so it has to clear domestically
(bt = 0) at every period. Because of this clearing condition, bond prices are no longer exogenous because
they depend on the clearing condition. We make the same no-leisure and ht = 1 normalization, giving a
resource constraint of ct + kt+1 − (1− δ)kt = f(kt)

Economy: Instead of the HH optimizing over its lifetime, we now consider that we have a "social plan-
ner" taking the initial input of capital as given and choosing an infinite sequence of capital (kt+1) and
consumption. This gives a Lagrangian of

L =

∞∑
t=0

βtu(ct) +

∞∑
t=0

λt(f(kt) + (1− δ)kt − kt+1 − ct)

Taking FOCs and substituting yields uc(ct)
uc(ct+1) = β[fk(kk+1) + 1 − δ]. So it follows that the steady state is

again kNM. From the increasing with diminishing returns and limit conditions, we know this steady state is
unique, positive and finite. See Section 2.2 for investment intuition.

Transition Dynamics: Think about the dynamic programming section. We can apply the results about
policy functions to say some useful things about this model. We have a well-defined policy function for cap-
ital that gives us an implicit policy function for consumption. Remember the L-S paradigm about "states"
and "controls". The policy function takes an input today’s capital, a state variable. This gives us an optimal
choice for both tomorrow’s capital, because the policy function for capital is defined as what will satisfy the
unique fixed point where we plug our value function into our "refining operator" and get back the exact
same function, and by extension today’s consumption. Because of the monotonicity and ceiling/floor of the
policy function for capital, it limits to a steady state, which means consumption does too, as long as the
initial value given for capital is feasible. This implies this model has the characteristic of "global stability".

Now we will think about the transition dynamics in less general terms. Let’s think more concretely about
what "feasible capital level" means. Recall g(k) = f(k) − (1 − δ)k. So consumption, c(k) = g(k) − h(k)
reaches a minimum when all resources are put towards tomorrow’s capital (g(k) = h(k)) and a maximum
where we consume everything and don’t leave resources for tomorrow (h(k) = 0). This gives "lifetime"
bounds on capital. Obviously, you can always consume everything, giving a lower-bound on lifetime capital
as 0. In the dynamic programming section, we left k ∈ R as an unknown upper bound. But we can define
this explicitly by thinking of making the decision to consume nothing in every period, in other words reaching
a steady-state of c = 0. This would imply that k = g(k). So define k such that k = δ−1f(k). Now we know
that capital cannot exceed the bounds of [0, k].

Now to understand the actual period to period movement, consider the rewriting of the budget constraint:

ct − (f(kt)− δkt) = kt − kt+1 ∴ kt ≥ kt+1 ⇐⇒ ct ≥ f(kt)− δkt and kt ≤ kt+1 ⇐⇒ ct ≤ f(kt)− δkt

Recall k∗ = kNM = f−1
k (δ + ρ). Again by the BC

k∗ > kt+1 ⇐⇒ k∗ > f(kt) + (1− δ)kt − ct ⇐⇒ ct > f(kt) + (1− δ)kt − k∗

Therefore

ct+1 ≥ ct ⇐⇒ ct ≥ f(kt) + (1− δ)kt − k∗ and ct+1 ≤ ct ⇐⇒ ct ≤ f(kt) + (1− δ)kt − k∗

These relationships/inequalities, combined with global stability, yield just one example of a precise way of
describing the joint path of consumption and capital over time. We can visualize this in the form of a
phase diagram, seen below, which relies on the major components of the above inequalities, namely how
the magnitude of ct relates to f(kt) − δkt and f(kt) + (1 − δ)kt − k∗. Graphing these curves gives regions
where certain conditions hold, telling us something about the evolution of capital and consumption
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Condition f(kt)− δkt > ct f(kt) + (1− δ)kt − k∗ > ct k c Optimality Feasible?
A X X ↑ ↑ X
B X X ↓ ↑ X
C X X ↓ ↓ X
D X X ↑ ↓ X

We will show that given k0 < k∗, choosing c0 from the policy function puts us in region A (indefinitely) and
k0 > k∗ puts us in region C. However, if the policy function is not followed initially, the saddle path will
drift over into B or D and some of the nice properties (e.g kt < k∗ implies montonistic increasing capital)
no longer hold. Specifically (recall c(k) = g(k) − h(k) is the policy function for consumption), if we pick
c0 > c(k0), then eventually the economy will enter region B, regardless of where we started. Similarly, pick-
ing c0 < c(k0) makes region D an inevitability. So even though we may be tempted to use some of our results
from the policy function and add an additional ⇐⇒ paired with some inequality relating kt and kt+1 onto
the end of a couple of these strings of math above, we cannot because it is possible that we will make a "bad"
initial choice of consumption. The table above gives some intuition, including that capital and consumption
should be "trending" in the same direction for optimality. Also notice for the two boundaries, one should be
(optimally speaking) binding consumption from above and one should be binding below. Intuitively, we can
think of this making an "optimality sandwich", for if both of the bounds are binding in the same direction,
the path is unsustainable from an optimization perspective (i.e. we veer off to an undesirable point). A more
qualitative interpretation: if consumption is smaller than the gap between output and the amount of capital
to be lost from depreciation, then capital is increasing (otherwise decreasing), and if consumption is larger
than the gap between steady state capital and the sum of output and capital less depreciation, consumption
is increasing (otherwise decreasing). A simpler qualitative interpretation is kt+1 = kt along the quadratic
curve (so going above/below produces an invariant inequality) and ct+1 = ct along the cubic curve.
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We will go through each region and what could happen when we begin there. First, the non-trivial border of
region cases are dealt with. Next, regionsB andD will be discussed because the path is trapped there when it
enters. This will make discussion for the two optimally feasible regions,A andD, much more straightforward.

Borders:
First, if a point lies on the boundary of A and B (but not at (k∗, c∗), this implies that ct = f(kt)−δk =⇒

kt+1 = kt. Note that this implies ct+1 > ct

ct+1 > ct ⇐⇒ uc(ct+1) < uc(ct) ⇐⇒ β[fk(kt+1) + 1− δ > 1] ⇐⇒ fk(kt+1) > ρ+ δ ⇐⇒ kt+1 < k∗

So clearly the point changes vertically and not horizontally, thereby moving off the boundary into B, as
implied in the diagram. Instead, if a point is on the boundary (non-steady state) of B and C, then ct =
f(kt) + (1− δ)kt − k∗ =⇒ kt+1 = k∗ < kt. If we go back to the string of math above, this also implies that
ct+1 = ct, so the point moves horizontally but not vertically into B. The other cases follow very similarly.
The above math shows that we have for the non-steady state border (so kt > k∗) of C and D

ct = f(kt)− δ =⇒ kt = kt+1 =⇒ kt+1 > k∗ =⇒ ct+1 < ct

Thus, the point moves down (no horizontal change) into D. Similarly, on the border of A and D, flipping
the logic from what happened with regions B means that we again have kt+1 = k∗ and ct+1 = ct, but this
time kt > k∗, so the point will be moving to the right with no vertical change, landing it in D. Region B :

If we consider (kt, ct) lying in the interior of B, then ct+1 > ct from the above result that began
with a main premise of B: ct > f(kt) + (1 − δ)kt − k∗. This also implies kt+1 < k∗ from the math in
the border paragraph. We also know from the other defining characteristic of B and the math above:
ct > f(kt)−δkt =⇒ kt+1 < kt. As alluded to earlier, we should note that now all the norms we have for the
policy function no longer hold; earlier we would expect capital to be increasing monotonically if kt+1 < k∗,
but this logic assumes we are following the policy function from t = 0. Further, we know from the BC that
the difference between today and tomorrow’s capital stock is equal to the distance between ct and f(kt)−δkt.
Since capital is decreasing and consumption is increasing, we know this difference is increasing (because of
the monotonicity of f(·)), so the magnitude of tomorrow’s capital stock is plunging at a faster and faster
rate. Therefore, eventually we will get kt+1 0 or negative. This means this regions yields an infeasible path
since at some point we will not be able to solve for tomorrow’s consumption. Implicit in this analysis is that
once a path is in the interior of B it cannot leave.

Region D :
Consider (kt, ct) lying in the interior of D. We know kt < k, but define an object kt by ct = f(kt)− δkt,

in other words the value of capital that will lie on the f(kt)− δkt curve/boundary, given the value of today’s
consumption (these two constructs are related; we will show, with respect to region D, kt → k and ct = 0).
Since D has the defining characteristic that ct < f(kt) + (1− δ)kt − k∗, it follows that kt > kt in this region
because it will have to go "to the right" to find the f(kt)− δkt boundary. We also have

f(kt) + (1− δ)kt > f(kt) + (1− δ)kt =⇒ ct + kt > f(kt) + (1− δ)kt =⇒ kt > kt+1

since f(kt) + (1− δ)kt is clearly strictly increasing and kt+1 = f(kt) + (1− δ)kt− ct. kt is bounded above by
k because we can’t have a negative value for consumption. Further, we know (from the math above) that
consumption is decreasing and capital is increasing, so kt, the upper bound on kt+1 in D, has limit k (the
point in which we cannot possibly increase the capital stock further). So it should follow intuitively that a
path will limit to this ceiling. Suppose you instead thought it would limit to a point

(
k̂, ĉ
)
, where ĉ ≥ 0 and

k∗ < k̂ < k (we know it would have this lower bound since we already demonstrated ct < f(kt)− δkt implies
a monotonistic increase in capital). Then it would follow that for any ε > 0 ∃T s.t |cT+1− cT | < ε, meaning
kt+1 → k∗, which is a contradiction3. Further, because the boundaries implicitly impose that any path in
the interior of D has decreasing consumption and increasing capital, a path that enters D cannot leave.

3This contradiction doesn’t exist for k case because the Euler equation (i.e marginal rate of substitution) goes to 0
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Region A:
If a point begins in A, it cannot move into C because

ct > f(kt) + (1− δ)kt − k∗ =⇒ kt+1 = f(kt) + (1− δ)kt − ct < k∗

so the remaining possibilities are obviously stay in A or move into B or D. If we follow the policy function,
the path cannot escape A because in order to leave A it would have to violate the optimality conditions that
are imposed by the policy function. If we choose to ignore the policy function, even for a period, the path
will veer off into another region. To see this consider a choice of consumption c0 > c(k0) (i.e. above optimal
choice). Note that because capital is a state variable, and choosing tomorrow’s capital determines what it
will be, our decision to choose a level of capital above the steady state implies we will have k1 6= h(k0). We
now can use some similar logic to the ct+1 > ct case:

c0 > c(k0) =⇒ uc(c0) < uc(c(k0)) =⇒ k1 < h(k0) =⇒ β[fk(k1)+1−δ] > β[fk(h(k0)+1−δ] =⇒ uc(c1) < uc(c(k1) =⇒ c1 > c(h(k0))

since h(k0) = f(k0) + (1− δ)k0 − c(k0), k1 = f(k0) + (1− δ)k0 − c0, anduc(ct) = uc(ct−1)/β[fk(kt) + 1− δ].
Implicit in this formulation is that even if we pick c1 = c(k1), the next periods consumption will still be above
what would be the optimal choice. Now consider generalizing this logic to a case where we randomly pick,
not necessarily at date 0, a level of consumption above what the policy function tells us. That means the
next periods capital will be below the policy function’s choice, and this creates a never-ending cycle meaning
we will never be able to get "back on track" to the path that would have happened with not deviating from
the policy function. The same happens for consumption: because we are bound by the BC and evolution
of capital equation, our single deviation prevents from rejoining the initial policy function path. In other
words, the path will always lie above (visually, since consumption is on the y axis) the policy function path.
Because of how the area region A shrinks and capital is growing (i.e moving right towards the steady state),
we know that the margin of difference will eventually lead to the path leaving A and going into B. The case
where we chose a below optimal consumption level (e.g. c0 < c(k0)) should follow pretty easily: we can just
flip all the inequalities from above. So in this case, the path would stay below the policy function path and
eventually leave A and go into D. Another way we can think about this is with the transversality condition
from the last section. We know that if a path limits to the steady state pair, it satisfies the transversality
condition. So since the paths can’t limit to the steady state, they can’t be optimal paths (also violates a
notion of uniqueness). Put differently, any path able to stay in A is an (the) optimal path.

Region C :
This follows very closely from what we saw with A. Except now we have an initial capital greater than

the steady state. Again, we have that a path from C can’t go into A, and the only way it will leave C is if a
non-optimal path is chosen. If we choose c0 > c(k0), the path will always lie above the optimal path, and as
capital (and the area of region C) shrinks this means that the path will eventually cross into B. Similarly,
c0 < c(k0) implies the path will always lie below and the saddle path will eventually cross into D. In order
to see this explicitly, simply go to the A paragraph and substitute out the notation properly. We can also
again look to the transversality condition to confirm the notions of divergence and uniqueness.

Conclusion:
There are some important things to takeaway from this rigorous discussion. First, it’s important to note

the nuance of what all the different paths being discussed represent. We assume that the social planner,
by following the policy function, will always pick the correct path. But if we (an outsider) is trying to
emulate the decision of the social planner, say through a coding exercise where a sequence of consumption
and capital is generated given an initial level of capital and an initial "guess" for consumption, we may pick
wrong! Continuing with the coding example, we can include "if" conditions to see if we are veering off into
the infeasible regions and then subsequently revising the initial guess of consumption. After so many times
of violating the if conditions, the optimal path will eventually be found. Another important takeaway is that
there are infinite possible initial pairs (k0, c0), each of which can be the beginning of a sequence satisfying
Euler equation ∀t. The implication is that the Euler equation alone is not sufficient to guarantee that we
are on the optimal path. This exercise has shown why it follows that if the transversality condition is also
satisfied, then we have found the unique optimal path (unique to the initial k0).
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5 Competitive Equilibrium

Simple Example: Consider the "Robinson Crusoe" model where an agent lives one period. Now we don’t
make the no leisure assumption ` = 1−h. If we introduce technology to the model and substitute out leisure
of the utility function, the we get F.O.C of uc(·) = λ, u`(·) = λAFh(·), and c = AF (·). Now let’s decentralize
this simple model: where the supply and demand sides operate "autonomously" (i.e. take the behavior of
the other side as given), where households own capital stock and rent to firms, sells work to firms, and
maximizes utility and firms maximize profits subject to the economic conditions. More formally

Firm: π = max
kd,hd

AF (kd, hd)− rkkd − whd s.t rk andw given

HH: u(c, 1− hs)
c,hs,ks

s.t rk, w, andπ given and c ∈ [0, whs + rkk
s + π], ks ∈ [0, k], hs ∈ [0, 1]

where, to be explicit, (recall this a one period example) k is the capital stock for the entire economy, firms
do not set wages, households do not set the rental rate, and households see their choices as not affecting
profit. These assumptions will soon be generalized to more complex models, and you can think of them as
implicit market clearing conditions: for instance, households have no reason to not rent out all of their capital
in a situation where they only live one period. This gives a structure to completely define a competitive
equilibrium (CE), where our definitions will slowly get more complex as we build our models off of different
and less restrictive assumptions.

CE (simple):
A competitive equilibrium is a set of allocations c, hd, hs, kd, ks, and a set of prices w and rk s.t

• Taking rk, w, andπ as given, the HH consumption demand and labor/capital supply is c, hs, and ks

• Taking w and rk as given, the firm’s output and labor/capital demand are y, hd, and kd

• Markets Clear: y = c, hs = hd, and ks = kd

This competitive equilibrium can be characterized further by looking at the optimality conditions. The
firm’s FOCs give the classic result that AFk(·) = rk andAFh(·) = w, which from Euler’s theorem implies
that π = 0. The HH FOCs yield a similar result to what we saw in the "centralized model" (go back and
replace AF (·) with whs in the BC) and show u`(·)/uc(·) = w. We can impose market clearing conditions
to simplify these results even further, finding that one of the market clearing conditions will be redundant
(Walrus’ law) because it will be implicitly "left over" after everything else is imposed.

Simple Dynamic Example: Consider a setup with exogenous lifetime income and no disutility/extraneous
incentives involved with consumption (ct = yt). Now let’s introduce "time 0" structure: the consumption
good is widgets and household buy/sell claims to widgets for their lifetime (to be delivered at specified future
dates) all in period 0. Prices are strictly relative – there is an "arbitrary unit of account"4 (per widget) for
each time period. This gives a BC of

∑∞
t=0 ptct =

∑∞
t=0 ptyt. Given a classic time-preference utility setup

(
∑∞
t=0 β

tu(ct)) this yields a FOC of βtuc(ct) = λpt =⇒ pt+1 = ptβuc(ct+1)/uc(ct) considering the arbitrary
unit of account assumption (we can set p0 = 0, for example, since λ is indeterminate/prices are non-unique).

Now instead, consider a "sequential" structure: instead of all trade occurring at time 0, markets meet
each period and households trade in a per-period, zero coupon bond market. So a HH chooses an infinite
{ct, bt+1}. As previously there will need to be a "no ponzi" condition so the household does not die with
debt (unconstrained, they would have an incentive to borrow an arbitrarily large amount and never repay).
We can derive the condition using the previously seen iterative substitution within the budget constraint

ct+qtbt+1 = yt+bt =⇒ q0q1q2b2 = y0+b0−c0+q0(y1−c1)+q0q1(c2−y2) =⇒ · · · =⇒ we need lim
T→∞

bT

T∏
0

qt ≥ 0

4An analogous example would be a strictly digital currency (that doesn’t even have a fiat paper backing)

16



CE (simple,dynamic, sequential):
A set of quantities {ct, bt+1}∞t=0 and bond prices {qt}∞t=0 s.t

• Taking {qt}∞t=0 as given, the HH consumption/bond choices are given by {ct, bt+1}∞t=0

• Markets Clear: ct = yt and bt = 0

Again, we can further characterize this setup by looking at its optimality conditions, which are
βtuc(ct) = λtpt and qtλt = λt+1 =⇒ qt = βuc(ct+1)/uc(ct). If we think about qt as a proxy of relative price
(since bonds bought in the previous period - bt - payout at a rate of one per unit, whereas bonds bought in
this period - bt+1 payout at a rate of qt), it’s easy to think about the time 0 and sequential setups as yielding
functionally equivalent price solutions.

Decentralized Neoclassical: Adding "no leisure" and extending some of the assumptions from the simple
model, we impose that households own all of the factors of production and have an initially equal distribution
of capital and firm ownership. First, again consider a time 0 structure: all trade takes place in time 0, pt is
the price of widgets at time t that is set at time 0 (denominated in an arbitrary unit of account), rk,t is the
rental rate of capital in terms of time t goods, and wt is the price of labor denominated in time t goods (i.e
a real wage). With both sides taking k0, pt.wt, rk,t given ∀ t, this yields

Firm: Π =

∞∑
t=0

pt[AF (kdt , h
d
t )− rk,tkdt − wthdt ]

HH:
∞∑
t=0

βtu(ct) s.t
∞∑
t=0

pt[ct+kt+1−(1−δ)kt] ≤
∞∑
t=0

pt[rk,tk
s
t+wth

s
t ] and ct ≥ 0, kt+1 ≥ 0, ksy ∈ [0, kt], h

s ∈ [0, 1] ∀ t

where Π is taken as given by the HH, implying if its non-zero then there is no credit/debit to account for
via firm ownership in the BC, and the Firm and HH choice variables are defined intrinsically, as shown below.

CE (neoclassical, time 0):
Given k0, an infinite set of prices {pt, rk,t, wt} and allocations {hdt , hst , kdt , kst , kt+1} s.t

• Given {pt, rk,t, wt}, {kdt , hdt } solves the firm’s problem

• Given {pt, rk,t, wt} and Π, {ct, kt+1, h
s
t , h

s
t} solves the HH problem

• Markets clear: kst = kdt , h
s
t = hdt , and ct + kt+1 − (1− δ)kt = F (kdt , h

d
t ) ∀ t

Once more, this setup yields the usual factor price equations of wt = Fh(·) and rk,t = Fk(·), implying
zero profits. Imposing market clearing and no leisure, we can combine the FOCs for the household to get
λpt = βtuc(ct) andλpt = λpt+1(rk,t+1 + 1− δ) =⇒ βuc(ct+1)[Fk(kt+1, 1) + 1− δ] = uc(ct). We also see that
the ratio of (temporally adjacent) prices is equal to the discounted ratio of marginal utilities.

A sequential setup provides an opportunity for a recursive structure, but as implied earlier in this section
and in the dynamic programming section, the solution will be functionally equivalent, in this case because
it’s a "static" problem. In order to emulate the fluctuations of the balance between income and expenditures
across time, a zero coupon bond market needs to be introduced. Because factor prices have been continually
shown to be functions of the capital stock, in order to keep with the paradigm that factor prices are known
to agents impose that HH have knowledge of the capital stock k′ = <(k). We still consider the HH to be
atomistic, believing its choices do not affect aggregate economic levels, but this time this includes prices,
not just profit. This example is largely reflective of reality: a consumer, for instance, wouldn’t think that
boycotting McDonald’s would lead to the downfall of the company, even though if they were "representative"
(and was followed en masse) it would. But the HH’s choice needs to be consistent with the aggregate. So
define so notation: K andB represent the HH capital and bonds, with kb for the aggregate stock. Market
clearing/closed economy implies b = 0.
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Subject to the HH BC q(k)B′ = rkK
S+w(k)Hs+π(k)+B−C−I and evolution of capital K ′ = (1−δ)K+I

V (K,B, k) = max
C,I,Ks,Hs

u(C) + βV (K ′, B′, k′)

Note that this Bellman conforms to the L-S paradigm. The firm seeks to maximize

π(k) = Π = F (Kd, Hd)− rk(k)Kd − w(k)Hd

Let · (for this setup only) be (K,B, k). Define relevant functions V (·), C(·), I(·),Ks(·),Hs(·),Kd(k), andHd(k).
Define K(·) = (1 − δ)K + I(K,B, k) and q(k)B(·) = rk(k)Ks(·) + w(k)Hs(·) + π(k) + B − C(·) − I(·)
CE (neoclassical, recursive, sequential):
A set of functions V (·), C(·), I(·),Ks(·),Hs(·),Kd(k), andHd(k),<(k), q(k), rk(k), w(k), andπ(k) s.t

• V satisfies the HH Bellmamn

• Taking <(k), q(k), rk(k), w(k), andπ(k) as given, the HH choices of C, I,Ks, andHs follow C, I,Ks, andHs

• Taking rk(k) andw(k) as given, the Firm’s choices of Kd andHd follow Kd andHd

• Markets Clear: K(k, 0, k) = 0,K(k, 0, k) = <(k),Ks(k, 0, k) = Kd(k), andHs(k, 0, k)

Firm FOCs yield the usual rk(k) = Fk andw(k) = Fh. With market clearing conditions slightly simplifying
the problem, we get HH FOCs of uc(C) = q(k)−1βVB ·′ andVK(·′) = q(k)−1VB(·′). We also have envelope con-
ditions Vk(·) = βVK(·′)(1− δ) + rk(k)q(k)−1βVB(·′) andVB(·) = q(k)−1βVB(·′). Combining these conditions
yields the usual Euler condition seen in past setups of q(k) = βuc(C

′)/uc(C). We can also substitute out the
value function for bonds with the value function for capital relation, and then substitute out the value func-
tion for capital with the marginal utility relation, yielding a different form of uc(C) = βuc(C

′)(rk(k′)+1−δ).
This model can also be simplified even further using the market clearing conditions on the BC, with the cap-
ital and labor functions respectively becoming k and 1, this implies profit is 0 from Euler’s theorem. With a
representative HH holding no bonds and I(·) = <(k)−(1−δ)k, we get a BC of C(·)+<(k)−(1−δ)k = F (k, 1).
Combined with uc[C(k, 0, k)] = βuc(C[<(k), 0,<(k)])(Fk(<(k), 1) + 1 − δ) from the Euler/Envelope results,
we now have a formulation that pins down solutions for capital and tomorrow’s consumption. We also very
clearly can pin down bond prices using the two results that related marginal utility.
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6 Stochastic Models

A Prelude on Time Series Stuff
First Order: Consider an AR(1) model yt = λyt−1 + wt =⇒ (1− λ)yt = wt. We also have

yt = λ(λyt−2 + wt−1 + wt = λ2yt−2 + wt + λwt−1 =⇒ · · · =⇒ (1− (λL)k)yt =

k∑
j=0

(λL)jwt

So if (λL)kyt limits to 0 and the RHS is finite, yt =
∑

[ j = 0]∞(λL)jwt. So combining all of these results,
we can conjecture that (1 − λL)−1 = 1 + λL + (λL)2 + . . . . But notice that it’s also possible to similarly
derive a "forward looking" representation by

yt = λ−2yt+2 − λ−1wt+1 − λ−2wt+2 =⇒ · · · =⇒ (1− (λL)−k)yt = −
k∑
j=0

(λL)−jwt

where yt+1 = Fyt = L−1yt. So imposing some similar limit conditions as above, we could also conjecture
that (1 − λL)−1 = −(λL)−1 − (λL)−2 + . . . . So now we have two different forms. Further complicating
things is that our limit conditions imply that we could also write the solution yt = (1 − λL)−1wt + λtc for
any c ∈ R. To help establish some guidance, first assume y0 is given, that all realizations of yt andwt are
real valued, and |λ| 6= 1. Finally, impose that c = 0. Then for |λ| < 1 we should use a backward-looking
solution (first derivation), and for |λ| > 1 a forward-looking solution.

Example (Solow): Consider the Solow model with Cobb-Douglas production kt+1 = (1 − δ)kt + sAtk
α
t .

We have a steady state of k = (sA/δ)1/(1−α). By a first order Taylor expansion (equality assumed)

(kt+1−k = (1− δ)(kt − k) + skα(At −A) + αsAkα−1(kt − k) =⇒ k̂t+1 = (1− δ + αδ)k̂t + δÂt

since δ = sAkα−1. Suppose further that At = A =⇒ Ât = 0. Then since there is no deterministic variable,
it would imply a general solution is k̂t = (1 − δ + αδ)tc. We would want this to hold at t = 0, so that
gives c = k̂0. Supposed instead we considered each realization of At to be in some compact set. Since
1− δ + αδ < 1, we can impose a backward looking solution of k̂t+1 = δ

∑∞
j=0(a− δ + αδ)jLjÂt.

Second Order: Now consider an AR(2) process yt = φ1yt−1 + φ2yt−2 + wt. Thus

(1− φ1L− φ2L
2)yt = wt =⇒ (1− λ1L)(1− λ2L)yt = wt

by a quadratic decomposition. Clearly, we need λ1λ2 = −φ2 andλ1 + λ2 = φ1, so both λ1, λ2 must satisfy

λ2 − φ1λ− φ2 = 0 =⇒ λ =
φ1 ±

√
φ2

1 + 4φ2

2

from the quadratic formula. This also implies we have inverse roots by 1− φz − φ2z
2.

We will usually deal with the distinct, real root case of φ2
1 + 4φ2 > 0.

Example (Neoclassical): FOCs yield (fk(kt+1) + 1 − δ)−1 = βuc(ct+1)/uc(ct) and ct = f(kt) + (1 −
δ)kt−kt+1. This steady state therefore is the pair (k, c) that satisfies 1 = β(fk(k) + 1− δ) and c = f(k)− δk.

ucc(c)(ct−c) = βucc(c)[fk(k)+1−δ](ct+1−c)+βuc(c)fkk(k)(kt+1−k) =⇒ ucc(c)cĉt = ucc(c)cĉt+1+βuc(c)fkk(k)kk̂t+1

=⇒ ĉt = ĉt+1 +
µ

σ
k̂t+1 (σ =

−ucc(c)c
uc(c)

> 0, µ = −βfkk(k)k > 0)

by a first order Taylor expansion. We can also do something similar for the resource constraint

(ct − c) = fk(k)(kt − k) + (1− δ)(kt − k)− (kt+1 − k) =⇒ ĉt =
k

cβ
k̂t −

k

c
k̂t+1

since β = (fk(k) + 1− δ). Thus we can combine the two Taylor expansion results by
k

c
(β−1k̂t − k̂t+1) =

k

c
(β−1k̂t+1 − k̂t+2) +

µ

σ
k̂t+1 =⇒ ∃φ1, φ2 s.t (1− φ1L− φ2L

2)k̂t = 0
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where φ1 = β−1 + 1 + (cµ)/(kσ) andφ2 = −β−1. We can represent the entire system by(
µ/σ 1

1 0

)(
k̂t+1

ĉt+1

)
=

(
0 1
β−1 −c/k

)(
k̂t
ĉt

)
=⇒

(
k̂t+1

ĉt+1

)
=

(
β−1 −c/k

−µ/(σβ) 1 + (µc)/(σk)

)(
k̂t
ĉt

)
So it conforms to the general setup of xt+1 = Mxt.
Recall also that since (1 − φ1L − φ2L

2)k̂t we have (1 − λ1L)(1 − λ2L)k̂t = 0. By |M − λI| = 0, the
eigen values of M correspond to the λ values we would get from this decomposition (see Hamilton Prop
1.1). And we can show that |λ1| < 1 and |λ2| > 1. To see this define θ = (µc)/(σk) > 0 and a function
ψ(λ) = (β−1−λ)(1 + θ−λ)− θβ−1. The eigenvalues are found at setting this function to 0. The function is
convex and quadratic, so by ψ′(λ) = 2λ− (1 + θ + β−1) ψ(λ) is minimized at λ = .5(1 + θ + β−1). Further,
we have ψ(λ) < 0, ψ(0) > 0, andψ(1) < 0. Therefore by the monotonicity of ψ(·) on the intervals on either
side of λ, 0 < λ1 < 1 < λ < λ2. So instead of writing the whole system in matrix form, we can just focus on
capital by k̂t+ c1λ

t
1 + c2λ

t
2 since we have a representation of k̂t that doesn’t include another variable. By our

assumptions (k0 known and k̂t → 0), this gives us k̂0 = c1 + c2, but since c2 ∈ R andλt2 → ∞ the limiting
assumption for capital is only satisfied if c2 = 0 =⇒ c1 = k̂0

Blanchard and Kahn Method: This method combines the processes of the two above approaches.
Assume we have (like in the neoclassical example) a general form of xt = Mxt+1. Perform a decomposition
M = V ΛV −1, where V has columns corresponding to the eigenvectors of M in unit length and Λ is a
diagonal matrix with the eigenvalues on the diagonal. Notationally, let vij denote the ij element of V and
vij represent the ij element of V −1. For this method to be useful, we need v11 6= 0 (which is the case for
the neoclassical model). Define x̃t = V −1xt =⇒ x̃t = Λx̃t−1 =⇒ x̃1,t = λ1x̃1,t−1 and x̃2,t = λ2x̃2,t−1 =⇒
x̃1,t = c1λ

t
1 and x̃2,t = c2λ

t
2 since there is no other variable in either of the equations. Now we can "back out

of" the tilde notation by reimposing its definition

xt = V x̃t =

(
v11 v12

v21 v22

)(
c1λ

t
1

c2λ
t
2

)
=

(
v11c1λ

t
1 + v12c2λ

t
2

v21c1λ
t
1 + v22c2λ

t
2

)
which can be simplified with prior knowledge about the system
Shortcut: If you are previously familiar with the B-K method, then you can jump right to the step
x̃1,t = c1λ

t
1 and x̃2,t = c2λ

t
2. If you know (like in the neoclassical model) λ2 > 1 =⇒ c2 = 0 =⇒ x̃2,t = 0.

Then from the definition of x̃2,t we have

0 = v21x1,t + v22x2,t =⇒ x2,t =
−v21

v22
x1,t =

v21

v11
x1,t

by the definition of the 2×2 inverse. So we need v22, v11 6= 0 (these are equivalent). Then from x1,t = v11c1λ
t
1,

we get c1 = x1,0/v11 =⇒ x1,t = x1,0λ
t = λ1x1,t−1.

Applying the neoclassical example, we get k̂t = k̂0λ
t
1 and ĉt = k̂0λ

t
1v21/v11λ

t
1

Time Series Processes: Let y = {yt}∞t=−∞. y is stationary if f(yt, . . . , yt−k) = f(yt+s, . . . , yt+s−k) ∀ s, k, t.
In other words, the distribution of a continuous sample of y must be identical to the distribution of any other
continuous sample with the same length. This is obviously a very burdensome definition, so also consider that
y is covariance stationary if E[yt] = µ, var(yt) = γ0 ∈ R, andE[(yt−µ)(yt−s−µ)] = γs ∀ t, s. An important
nuance here is that the covariance only depends on the interval length, not where in the sample the interval
is. Similarly, εt is a white noise process if E[εt] = 0, var(εt) = σ2 ∈ R, and cov(εt, εt−s) = 0 ∀ t and ∀ s 6= 0.
We also have a class of processes that are defined, in some fashion, w.r.t a white noise process εt.
AR(p) : yt =

∑p
j=1 φjyt−j + εt andMA(q) : yt =

∑q
j=1 θjyt−j + εt. This yields

Model µ γ0 γs ρs

MA(1) 0 (1 + θ2
1)σ2 θ1σ

2, 0 θ1/(1 + θ2
1), 0

MA(q) 0 (1 + θ2
1 + · · ·+ θ2

q)σ
2 (θs + θs+1θ1 + · · ·+ θqθq−s)σ

2, 0 γs/γ0

MA(∞) 0 σ2
∑∞
j=0 θ

2
j σ2(θs +

∑∞
j=1 θjθj+s) γs/γ0

AR(1) 0 σ2/(1− φ2
1) φs1γ0 φs1

where if there are two numbers for an order x process’ metric they correspond to s ≤ x, s > x.
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Note that a AR(p) process can be represented as MA(∞), as long as the roots of 1 − φ1z + . . . φpz = 0
are outside the unit circle. More details in the appendix. Also any of the aforementioned definitions can be
altered to include a constant, in which case µ 6= 0

6.1 Stochastic Neoclassical
The fundamental assumption for this model is that yt = ztf(kt), where zt can be thought of a stochastic
shock analogous to the state of technology at a given time period. A trivial example would be maybe the
power grid is really spotty, and your output is directly proportional to have much power capability you
have at a given time period. Notationally, consider zt = zt(s

t) and st = (st, . . . , s0), implying the shock is
a function of the history of a shock. We will assume that there are a finite number of possibilities for an
event, in other words st ∈ {s[1], . . . , s[N ]}. We have πt(st) andπt(s

t|sτ ) as the conditional and unconditional
probabilities of observing a particular history, respectively.
So we have a general social planning problem of

∞∑
t=0

∑
st

βtu[ct(s
t)]πt(s

t) s.t ct(st) = zt(s
t)f [kt(s

t−1] + (1− δ)kt(st−1 − kt+1(st)

With a LM that is also a function of the state, this yields FOCs of βtuc[ct(st)]πt(st) = λt(s
t) and

λt(s
t) =

∑
st+1|st λt+1(st+1)(zt+1(st+1)fk[kt+1(st)] + 1− δ). Because πt(st+1)/πt+1(st) = πt+1(st+1|st)

uc[ct(s
t)] =

∑
st+1|st

(zt+1(st+1)fk[kt+1(st)]+1−δ)πt+1(st+1|st) =⇒ uc(ct) = Etβ(zt+1fk(kt+1)+1−δ)uc(ct+1)

The recursive social planning approach follow

V (k, s) = max
c
u(c) + β

∑
s′

V (k′, s′)π(s′|s) s.t k′ = z(s)f(k) + (1− δ)k − c

Here, an implicit "Markov Process" assumption is made where we consider that the realization of tomorrow’s
stochastic state only depends on the previous date’s realization (as opposed to the entire history). This gives
a FOC of uc(c) = β

∑
s′ Vk(k′, s′)π(s′|s) and envelope Vk(k, s) = (z(s)fk(k) + 1 − δ)β

∑
s′ Vk(k′, s′)π(s′|s).

Therefore, we have jointly uc(c) = β
∑
s′ uc(c

′)(z(s′)fk(k′) + 1− δ)π(s′|s)

We can also decentralize the model as we did in the previous section, where the prices are also functions of
the history. Taking the prices and the stochastic shocks as given, the firm in the non-recursive setup solves

Π =
∑
t=0

∑
st

pt(s
t)[zt(s

t)F [kdt (st), hdt (s
t)]− rk,tkdt (st)− wt(st)hdt (st)]

For the HH problem they take prices and profit as given and solve∑
t=0

∑
st

βtu[ct(s
t)]πt(s

t) s.t
∑
t=0

∑
st

pt(s
t)[ct(s

t)+kt+1(st)−(1−δ)kt(st−1)] =
∑
t=0

∑
st

pt(s
t)[rk,tk

d
t (st)+wt(s

t)hdt (s
t)]+Π

The firm FOCs are naturally rk,t(s
t) = zt(s

t)Fk(·) andwt(s
t) = zt(s

t)Fh(·), which again implies by Eu-
ler’s theorem that profits are 0 at each date. Imposing market clearing conditions, the HH FOCs are
βuc[ct(s

t)]πt(s
t) = pt(s

t) and pt(s
t) =

∑
st+1|st pt+1(st+1)(rk,t+1(st+1 + 1 − δ). Substituting in the firm

FOCs and imposing market clearing on the BC, we get back the same solutions as the social planning setup.

We can also look at a decentralized, recursive model. The firm solves

π(k, s) = max
Kd,Hd

z(s)F (Kd, Hd)− rk(k, s)Kd − w(k, s)Hd s.t z(s), rk(k, s), andw(k, s) given

For the HH, to draw equivalence with the time 0 setup, we can consider a bond market where the bonds are
proxies to hedge against the realizations of the stochastic shock (and thus only pay out if a certain shock
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occurs). To impose this structure explicitly, denote a N × 1 vector B̃, whose jth element represents claims
against the jth possible state of the world. It’s also useful to define a N × 1 vector X(s), which has a 1 at
the s = jth element and 0 elsewhere. Also, as with the other setups, the bond vector represents the bonds
purchased in the current time period and they pay out in the next. So we have a distinction that B is a
current state (B · X(s) is what’s paid out), B̃ is a control variable, and B′ = B̃ is a future state variable.
To emulate the "full information" aspect, consider a law of motion for aggregate capital k′ = <(k, s) known
to the HH. The HH capital follows the usual K ′ = (1− δ)K + I. This yields a HH BC of

C + I + B̃ · q = rk(k, s)Ks + w(k, s)Hs + π(k, s) +B ·X(s)

So subject to the BC with K ′ = (1− δ)K + I andB′ = B̃, the HH Bellman is

V (K,B, k, s) = max
C,Ks,Hs,I,B̃

u(C) + β
∑
s′

V (K ′, B′,<(k, s), s′)π(s′|s)

The firm FOCs and profit are fundamentally identical to the dynamic setup. For the HH, since consumption
does not appear in the evolution of capital equation, we have two options: either substitute for investment
and include it or consider a Lagrangian type optimization where a constraint (LM) is imposed with respect
to the BC. We will show the implied Lagrange result. Imposing market clearing to eliminate Hs andKs, we
have FOCs of uc(C) = λ, λ = β

∑
s′ Vk(·′)π(s′|s), and qjλ = β

∑
s′ VBj (·′)π(s′|s) ∀ j The envelope conditions

are Vk(·) = rk(k, s)λ + (1 − δ)β
∑
s′ VK(·′)π(s′|s) andVBj (·) = Xj(s)λ ∀ j. Combining and summing over

the probabilities ∑
s′

VK(·′)π(s′|s) =
∑
s′

[
rk(·′)λ′ + (1− δ)β

∑
s′′

VK(·′′)π(s′′|s′)
]
π(s′|s)

We can update the conditions using λ = β
∑
s′ λ
′(rk(·′) + 1− δ)π(s′|s), yielding

uc(C) = β
∑
s′

uc(C
′)[rk(·′) + 1− δ]π(s′|s)

The price, or ex-ante value, of the jth security is

qj(k, s) = β
uc(C(k′, 0, k′, s[j]))

uc(C(k, 0, k, s))
π(s[j]|s)

where 0 denotes B → 0. This condition is derived from the equities relating uc(C) and VBj (·′) to λ

6.2 Stochastic Difference Equations
Consider an information set It that represents everything known to us at t. Then Etyt+1 = E[yt+1|It].
Recall the first order difference equations. Imposing this structure we have Etyt+1 = λyt + zt. This is
also equivalent to yt = λyt−1 + zt−1 + εt, where εt = yt − Et−1yt. So naturally this can be rewritten as
yt = (1− λL)−1(zt−1 + εt) + cλt. Setting c = 0 is equivalent to assuming the model is in a neighborhood of
the steady state in the growth model. If |λ| < 1, consider a backward looking (direct) solution by

yt =

∞∑
j=0

λj(zt−j−1 + εt−j) = (1 + λL+ (λL)2 + . . . )Lzt + (1 + λL+ (λL)2 + . . . )εt

so let zt = φ(L)vt−j , where vt is a white noise process, and avt + ut, where ut is also a white noise
process. Then we have yt = (1 − λL)−1ψ(L)vt−1 + avt + but well-defined if the coefficient on vt−1 is
square-summable, further implying that yt is covariance stationary. We also have a forward looking solution
yt = −

∑∞
j=0 λ

−(j+1)(zt+j + εt+1+j . We can make this well-defined by writing zt as a factor of forecast errors

zt+1 = Etzt+1 + (zt+1 − Et[zt+1]), zt+2 = Etzt+2 + (Et+1zt+2 − Etzt+2) + (zt+2 − Et+1zt+2), . . .

zt+s = Etzt+s + (Et+1zt+s − Etzt+s) + · · ·+ (Et+s−1zt+s − Et+s−2zt+s) + (zt+s − Et+s−1zt+s)
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So thus we can define vt+s =
∑∞
j=0 λ

−j(Et+s − Et+s−1)zt+s+j then

∞∑
j=0

λ−jzt+j =

∞∑
j=0

λ−jEtzt+j +

∞∑
j=1

λ−jvt+j

Define εt = −λ−1vt. By Et−1vt = 0. we have

yt = −λ−1
∞∑
j=0

λ−j(zt+j + εt+1+j) = −λ−1
∞∑
j=0

λ−jEtzt+j

Note that these backward and forward formulations only work because of the equivalence of the new defini-
tions to the εt = yt − Et−1yt we initially saw.

Example: (Linearized Stochastic Growth Model) We have the equations from the initial example

ĉt = ĉt+1 +
µ

σ
k̂t+1 and ĉt =

k

cβ
k̂t −

k

c
k̂t+1

where σ = −ucc(c)c
uc(c)

> 0, µ = −βfkk(k)k > 0. However, now we have a stochastic shock in front of the
marginal product of capital and the output in the FOCs, as well as the expectation term. We can consider
x̂ = dx

x as a proxy for the deviation variables, see more details in the appendix. So let y = f(k) be output
at the steady state, z = 1 be non-stochastic steady state, and µz = βfk(k). Then we have a new system of

ĉt = Etĉt+1 +
µ

σ
k̂t+1 −

µz
σ
Etẑt+1 and

c

k
ĉt =

1

β
k̂t − k̂t+1 +

y

k
ẑt

This gives a vectorized, entire system representation of

Et
(
k̂t+1

ĉt+1

)
=

(
β−1 −c/k

−µ/(σβ) 1 + (µc)/(σk)

)(
k̂t
ĉt

)
+

(
0
µz
σ

)
Etẑt+1 +

(
y/k

(−yµ)/(kσ)

)
ẑt =⇒ Etxt+1 = Mxt + ζt

because the coefficients on the "core terms" do are not affected because the log-linearization process separates
everything. So we again have one eigen less than one and one greater. This gives us a system of Etx̃t+1 =
Λx̃t+ z̃t. So when we decompose this simplification into x̃1,t+1 and x̃2,t+1, the second variable (consumption)
is problematic because we have a future realization on the RHS. We can use the shortcut in the B-K method
from the time series subsection to say

x̃2,t = −
∞∑
j=0

λ
−(j+1)
2 Etζ2,t+j = −

∞∑
j=0

λ
−(j+1)
2 (v21 v22)Etζt+j

x̃2,t = v21x1,t + v22x2,t =⇒ x2,t =
−v21

v22
x1,t −

∞∑
j=0

λ
−(j+1)
2 ( v

21

v22 1)Etζt+j

Now we have a well-defined policy function to select consumption at period t. Consider mij the ij element
of M . Then we have

x1,t+1 = m11x1,t +m12x2,t + ζ1,t = (m11 −m12
−v21

v22
)x1,t +

m12

v22
x̃2,t + ζ1,t

We can also generate a "direct" solution using x̃1,t =
∑∞
j=0 λ

j
1(ζ̃1,t−j−1+εt−j) and x̃2,t = −

∑∞
j=0 λ

−(j+1)
1 Etζ̃2,t+j ,

using the final results found above with εt = x̃1,t − Et−1x̃1,t white noise. We have x1,t = v11x̃1,t + v12x̃2,t.
Equivalently, x1,t = v11Et−1x̃1,t + v11εt + v12Et−1x̃2,t + v12(x̃2,t −Et−1x̃2,t), so εt = v12

v11
(x̃2,t −Et−1x̃2,t) and

x1,t = v11Et−1x̃1,t + v12Et−1x̃2,t and x2,t = v21x̃1,t + v22x̃2,t

if we impose that when the "forecast error" terms will cancel each other out to in effect make x1,t ∈ It−1.
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7 RBC Model

The real business cycle model is concerned with deriving a balanced growth path and representing the
equation with respect to deviations from trends (usually through linearization)
Neoclassical model: E0

∑∞
t=1 u(Ct, Lt);Nt+Lt = 1; deterministic, labor enhancing growth Xt = γXt−1;Yt =

AtF (Kt, NtXt)
Preferences U(Ct, Lt) = 1

1−σ{[Ctv(Lt)]
1−σ}

Normalize variables with respect to Xt (except labor). Then because of CRS yt = AtF (kt, Nt) and kt+1γ =
(1− δ)kt + it. Let β = bγ1−σ Then we have

E0

∞∑
t=1

βtu(ct, 1−Nt) s.t AtF (kt, Nt) ≥ ct + kt+1γ − (1− δ)kt

L =

∞∑
t=1

βtu(ct, 1−Nt) +

∞∑
t=1

βtλt[AtF (kt, Nt)−
(
ct + kt+1γ − (1− δ)kt

)
]

Let f1(·, ·) denote the derivative of f w.r.t its first argument. Then the FOCs are

u1(ct, 1−Nt) = λt;u2(ct, 1−Nt) = λAtF2(kt, Nt);λtγ = βEtλt+1(F1(kt+1, Nt+1) + 1− δ)

Some symbolic points to note: λt can be thought of as the shadow price of consumption; λtAtF2(kt, Nt) the
marginal cost of labor, λtγ the marginal cost of investment, and the last term the expected marginal benefit
of investment.
A deterministic steady state (SS) is one where constant values are assumed. A stochastic SS is one where
agents form a subjective probability distribution about future realizations (e.g. of the technology factor At).
Deterministic steady state: AF1( kN , 1) = γ

β − 1 + δ; c
N = F ( kN , 1)− (δ+ 1− γ) kN ; u2(c,L)

u1(c,L) = AF2( kN , 1), where
F1(k,N) = AF1( kN , 1) since F1(·) is homogeneous degree 0.
Stochastic SS: Take output as a proportion of relative inputs. Then per the solow model, the "residual" is the
technology factor; essentially accounting from the error from the functional form specifications. Specifically,
let αK = rK

Y andαN = wN
Y be the factor shares (the ratio of the factor to output multiplied by the marginal

product). Then the solow residual St = Y
K
αK
t N

αN
t

. Since we impose αK + αN = 1 (i.e. constant returns to

scale) we have St = Y
Kα
t .N

1−α
t

= AtX
1−α
t . Taking logs, you can isolate the technology as the time variant

component of the residual by detrending log(St) = log(At) + (1− α)(t log(y) + log(X0)).
Tune parameters to match the model. For instance let r = γ

β − 1 and match it to what is observed in the
data for real interest rates. If we use a cobb-douglass production function and normalize A = 1 (with respect
to the deterministic case), then the from MPK α = r+δ

Y/K . You can also directly look at the labor share of
GDP and solve for α by setting labor share to 1− α.
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First some general intuition. The wealth effect will be larger the more permanent a shock is. This is
because the impact on the present discounted value of wealth is larger the more permanent the effect is (i.e.
with a less permanent shock , the effect dissipates over time, so the increase in the discounted value is less).
On the other hand, the substitution effect only looks at the initial shock itself; it’s not affected by how long
or how much the shock persists. Just that there had been a change in the present. So for a permanent shock,
the wealth and substitution effects cancel out, but the less permanent a shock is the more the substitution
effect dominates. Also note that Y dt = Ct + It, and that a large difference between Y st andY dt yields an
incentive to increase the interest rate to stimulate the demand for goods. Below, at t = 0, initial interest
rates are held constant. The arrows represent change relative to the steady state, with the exception of GE
which shows change with respect to the initial effect Temporary, positive technology shock (E[Ât+1] = 0)

period At Ct Yt It Nt Rt

t = 0, initial ↑ ↑ ↑↑ - ↑↑ ↓
t = 0, GE (response to Rt ↓) - ↑ ↓ ↑ ↓ -

t = 1 - ↑ ↑ ↓ ↓ ?

Initial effect, t = 0

• Obviously At increases

• Yt increases because the economy is more productive (direct effect). Ct increases because of a wealth
effect (feel richer, want to consume more).

• Nt increases because working is much more valuable. As stated above,this dominates the wealth effect
to increase

• No direct effect on It if Rt held constant

• The forces dictating supply for goods (labor) increase drastically compared to Y dt , so there is a large
gap between output demand and supply. Therefore the interest rate Rt falls to stimulate demand for
goods

General equilibrium effect, t = 0

• Technology is exogenous (not affected by Rt, so no change.

• Ct is stimulated by interest rate falling (less incentive to save)

• Nt has a small negative effect; we care less about saving/would rather get more utility today so there’s
a small positive effect on leisure. Yt has a small negative effect as a result

• It increases The opportunity cost on investment is lower. So firms invest more in capital so the return
on capital will be equal to the opportunity cost of investing. This is seen explicitly in the intertemporal
Euler equation: rt has a big change, At has no change, and Nt has a small change. So Kt+1 must be
increasing a lot for equality to hold. Similarly, the output gap decreases back to 0.

t = 1 effect

• Ct is still above steady state because we have more than steady state capital and are "eating our way
back" (consumption smoothing)

• Nt is slightly lower (than steady state). Small wealth effect, substitution effect no longer holds.

• Yt is slightly higher than SS. We are working a little less but have a lot more capital.

• It is slightly lower than SS. We are compensating for being above steady state capital,since the shock
has already dissipated. Rt begins slowly building back towards steady state (slope of consumption
path)
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Persistent shock (1 > ρ > 0) if tech follows AR(1)

period At Ct Yt It Nt Rt

t = 0, initial ↑ ↑↑ ↑ ↑ ↑ ↑
t = 0, GE (response to Rt ↑) - ↓ ↑ ↓ ↑ -

t = 1 - ↑ ↑ ↓ ↓ ?

t = 0 effect (mostly focusing on initial)

• Obviously At increases

• Ct increases even more than the temporary shock case because the change to the discounted permanent
income is greater (stronger wealth effect)

• Nt increases but by less than the temporary since the substitution effect doesn’t dominate by as much

• Because Et[Ât+1] > 0, It increases

• So the difference between the initial effect of the temporary and persistent shocks is that the degree
of changes are different (with the exception of investment). So this time, the demand for goods is
experiencing more of an increase than supply (for sufficiently high ρ). So the output gap is in the
opposite direction, meaning Rt goes up.

• So the responses to the GE effect are also the opposite. Demand for Ct and It should responds nega-
tively, while the small wealth effect now works against leisure (meaning output increases since capital
today is a state variable)

26



L = E0

∞∑
t=0

βteεt
(C1−γ

t

1− γ
+
h1+η
t

1 + η
+ λt[(KtUt)

αh1−α
t − Ct]

)
We know Kt+1 =

(
1− U1+φ

t −1
1+φ

)
Kt. Therefore

(Kt+1Ut+1)αh1−α
t+1 =

((
1− U1+φ

t − 1

1 + φ

)
KtUt+1

)α
h1−α
t+1

So then it follows that the F.O.C w.r.t Ut is

λt
Yt
Ut

= Et[λt+1βe
εt+1−εtUφt

(
1− δ(Ut))α−1

(
KtUt+1

)α
h1−α
t+1 ] = Et[λt+1βe

εt+1−εtYt+1]
Uφt

1− δ(Ut)

We also know that λt = C−γt and Yt = Ct, therefore

Y 1−γ
t

U1+φ
t

(1− δ(Ut)) = Et[βeεt+1−εtY 1−γ
t+1 ]

Missing: 1

U1+φ
t

(1− δ(Ut+1)) + 1 (inside the expectation multiplied by Y 1−γ
t+1 )
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8 Supplemental Notes

8.1 Solow
w/ Population Growth Assume there is one household with Nt members. Assume there is a time-invariant
rate population growth, so Nt+1 = (1+n)Nt. Now, we have It = sYt = sF (Kt, Nt), where we still normalize
the labor supplied per-member of the population to be 1. From the law of motion for capital, we do the
"divide by, multiply" trick

Kt+1

Nt+1

Nt+1

Nt
= (1− δ)Kt

Nt
+ sF (

Kt

Nt
, 1) =⇒ (1 + n)kt+1 = (1− δ)kt + sf(kt)

since F (·) is CRTS. This implies at steady state (n+ δ)k = sf(k). We can also get the golden rule by doing
a similar transformation to the resource constraint and then imposing a steady state

Ct
Nt

+
Kt+1

Nt+1

Nt+1

Nt
− (1− δ)Kt

Nt
= F (

Kt

Nt
, 1) =⇒ c = f(k)− (n+ δ)k

If we define the steady state variables as functions of s and take a FOC w.r.t s, then we clearly see fk(k) = n+δ
yielding the golden rule.

(also) w/ Technological Progress We amend the previous discussion to consider a situation where
Yt = F (Kt, XtNt) and Xt represents the labor augmenting technology (i.e technology that makes each
worker more efficient). We assume a technical rate of technological progress and Xt = (1 + x)t. So do a
similar trick as above,instead normalizing by XtNt and define z̃ = z/(XN) as z per unit of effective labor

Kt+1

Xt+1Nt+1

Xt+1Nt+1

XtNt
= (1− δ) Kt

XtNt
+ sF (

Kt

XtNt
, 1) =⇒ (1 + x)(1 + n)k̃t+1 = (1− δ)k̃t + sf(k̃t)

which yields a slightly less intuitive steady state of (x + n + nx + δ)k̃ = sf(k̃). Again we can do the same
to the resource constraint and then impose the steady state

Ct
Nt

+
Kt+1

Xt+1Nt+1

Xt+1Nt+1

XtNt
− (1− δ) Kt

XtNt
= F (

Kt

XtNt
, 1) =⇒ c̃ = f(k̃)− (n+ x+ nx+ δ)k̃

again, defining these variables as a function of s and then taking a FOC w.r.t s, we get that the golden rule
solves fk(k) = n+ x+ nx+ δ

Further Intuition on Dynamics: Some of the content in the Solow Open Econ sections makes more
sense once we’ve gotten to the full neoclassical section after the dynamic programming. For instance, if all
of the notes prior to this appendix have been read, we now know that along the locus of points f(kt)− δkt
we have a steady state for capital. We can also provide some more background on monotonistic convergence.
intuition on monotonicity. For the proof, we saw that by proving the derivative of the quasi-policy function
was bounded between 0 and 1, the FTC showed that kt was growing (shrinking) if k0 was below (above) the
steady state. But there can be a further appeal made to fixed point theory about why this should follow.
Assume 0 < g′(xt) ≤ 1− εt for some ε > 0. By the Mean Value Theorem,

|xt+1 − xt| = |g(xt)− g(xt−1)| ≤ (1− ε)|xt − xt−1| =⇒ |xt+1 − xt| ≤ (1− ε)t||x1 − x0|

by induction, where the RHS is converging towards 0.

8.2 Neoclassical Models
Further Intuition on Dynamics: One important thing to note is that we often normalize the rate (e.g.
see the rate of population growth in the solow example above) to be 1 + the rate (consider this the "change
rate"); this is because when 1 + the rate is multiplied by the current value it yields the new value. In the
context of this model, we get the change rate for capital (rate of return + 1) as a ratio of the current LM to
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tomorrow’s LM. This may perhaps make more sense when we look at bonds: the change rate is the inverse
of price (λt/λt+1 = q−1

t ). So when we multiply both sides by the ratio of tomorrow’s LM to the current, it
should make some intuitive sense that we get 1 on both sides. For capital, this is analogous to the fact that
the discount rate is the inverse as the change rate for capital at the steady state. From this, we can perhaps
get some more context for the "no arbitrage" property of the model. To expand upon a case that was alluded
to in this section, consider rt = ρ and k0 = kGR. At the golden rule, the marginal product of capital is δ,
meaning the rate of return to capital is 0. Thus, there is an incentive to sell off capital and buy bonds
because they obviously have a higher rate of return. There can be some further background on this issue by
considering a general discussion of income and substitution effects, shown below. Another relevant issue to
consider in the small open economy is the issue of "jumping straight to a steady state". This may not make
sense, considering some of the discussion in the closed neoclassical section. But in this setup, it was assumed
that the interest rate would be constant, implying that consumption is also constant. Since there can’t be a
difference in the rates of return, the capital level must just straight to kNM. If k0 < kNM, the bond market
allows for you to borrow the exact right amount (consider negative bond holdings) to be able to consume
at a constant rate. If k0 > kNM, the household will buy bonds and sell capital to be able to consume at a
higher permanent level, with the ROW paying them back (this scenario was discussed more explicitly in the
earlier notes). In the classic, closed economy neoclassical model, there is no ROW, so in order to jump, this
would have to be through a very high savings rate, which would eat at a proportionally much higher chunk
of consumption compared to what was seen with the sacrifice made in the open economy setup. Further, if
we assume one is willing to absorb all that "pain" today, that suggests that the interest rate must at least
be higher than the rate of time preference. Qualitatively thinking of this as a relatively high rate in and
of itself, this means people are discouraged from borrowing (in a mathematical sense with respect to our
model, a high interest rate implies a low price for bonds). But this also yields a contradiction for the desire
to jump straight to a higher level of capital: a high interest rate implies a high marginal product of capital
tomorrow (whereas a jump should imply a lower marginal product). In more simple terms, the fact that a
bond market in a closed economy bust clear at every period and has endogenous prices means that to make
a jump, there must be drastic substitution away from capital, which doesn’t really make sense given the
dynamics of the model.

Substitution and Income Effect Consider an application to the "one period" Robinson Crusoe model
(which has leisure); this makes the notation simpler although the setup and results are virtually identical
temporal models. Suppose the level of technology increases (A′ > A). Then we can consider the substitution
effect what could happen to (h, c) if we held marginal utility constant (i.e. stayed on the same indifference
curve). Since obviously the curve A′F (k, h) would yield an upward shift relative to AF (k, h), we can consider
doing this by considering a function A′F (k, h) + B, where B < 0 can be thought of as forcefully hindering
the level output output ("production technology") so we can stay on the same indifference curve. If we
assume preferences over consumption and leisure are quasi-concave5, the substitution effect yields increases
in both h and c. Here is a formal proof of claim. Consider c = B + AF (k, h) andAFh(k, h) = U`(·)/Uh(·).
Total differentiation of the utility function yields dU = Ucdc− U`dh = 0, which through substitution in the
second equation yields dAFh = dc/dh. This equality implies that the derivatives of c andh with respect to A
will be signed the same in this instance. By substituting this into a total differentiation of the first equation,
we get dB = −F · dA, meaning we get the desired substitution effect property that utility does not change
with an increase in A. Finally, totally differentiating some of these results and substituting in some of the
previous results,

[(−U2
` Ucc + 2U`UcUc` − U2

cU``]
1

U2
cU`
−AFhh

Uc
U`

] · dc = Fh · dA

Working through each term on the LHS, revisiting the assumptions on the relevant functions will show they
are all positive (in particular Uc` > 0 because of quasiconcavity). So dc/da > 0, meaning consumption and
consequently labor rises with an increase in the level of technology (this is, again, under the imposition of
holding utility constant through the B term). The result should also follow intuitively, because a higher level
technology implies an increase in marginal product of labor, which means that leisure is more expensive.

5for our application, this can be thought of simply as both monotonistic and convex, with an implication that indifference
curves get steeper as h increases. A more formal applied way of framing this is if we have two bundles of consumption and
labor (WLOG consider c1 > c2 andh1 > h2) such that utility is equal, then ∃(h, c) ∈

(
[h1, h2], [c1, c2]

)
yielding higher utility
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So what you can extrapolate is that in this instance (where we stay on the same indifference curve) the
benefits to utility by consuming more are exactly offset by the disutility from working more. However, this
is an offsetting process that we imposed ourselves to stay on the same indifference curve. We could in fact
jump to a different indifference curve (i.e. achieve higher utility) by simply letting the curve shift outward,
recognized as the income effect. Here, we see that a given time interval of work is more effective, so one
could work less and eat the same amount. This is why the effect on labor/hours is ambiguous: there is a
competing interest between leisure becoming more expensive but at the same time not needing to work as
hard to get a certain amount of consumption. The precise nature of the shift rectifies this ambiguity. See
the table and graph for more intuition.

8.3 Stochastic

AR(p) as MA(∞) This is directly from stack exchange6. For an AR(p) series

(1− ρ1L− ρ2L
2 − · · · ρpLp)︸ ︷︷ ︸

Φ(L)

xt = ut,

where the polynomial Φ(z) has roots strictly outside the unit circle, the ψ-weights in the causal MA(∞)

representation xt =
∞∑
i=0

ψiut−i are the solutions to the difference equations

ψ0 = 1

ψ1 − ρ1ψ0 = 0

ψ2 − ρ1ψ1 − ρ2ψ0 = 0

...
ψp−1 − ρ1ψp−2 − · · · ρp−1ψ0 = 0

ψt − ρ1ψt−1 − ρ2ψt−2 · · · ρpψt−p = 0, ∀t ≥ p.

The system can be solved like any linear homogeneous system of difference equations. The solution {ψi}
is a linear combination of terms of the form r−t where r is a root of the AR polynomial Φ. (The cases of
repeated or complex roots are ignored for simplicity. Same result holds.) The causality assumption ensures

that xt =
∞∑
i=0

ψt−iui converges, as a random variable. (In the AR(1) case, the causality condition is |ρ|< 1.)

When the AR polynomial has roots possibly inside, but not on, the unit circle. The MA(∞) representation
still exists but is not causal in general, i.e. it can be two-sided

xt =

∞∑
−∞

ψiut−i.

For example, in the AR(1) case with |ρ| > 1, then non-causal MA representation is a forward-looking solution

xt =
∑

−∞<i≤−1

(
−1

ρ
)−iut−i.

8.4 MISC
Taylor Series Expansion These largely follow Eric Sims’ notes.
Taylor’s theorem tells us the following

f(xt) = f(x) + f ′(x)(xt − x) +
f (2)(x)

2!
(xt − x)2 +

f (3)(x)

3!
(xt − x)3 + . . .

6https://stats.stackexchange.com/questions/455679/how-to-recursively-express-an-arp-process/455852#455852
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where the expansion is considered "at x", usually meaning the steady state in the context of Macro. For
smooth functions, the magnitude of the terms dissipates pretty quickly as n (order) grows. Therefore, we
usually (especially throughout the notes) just consider

f(xt) = f(x) + f ′(x)(xt − x) and f(xt, yt) = f(x, y) + fx(x, y)(xt − x) + fy(x, y)(yt − y)

where equality is imposed but it’s really an approximation. We also have a useful trick by log-linearizaiton.
The usual definition for a linearized variable is xt−x

x = x̂t. We can use a Taylor expansion trick, since we
assume x̂t to be small in magnitude. We have from a first order Taylor expansion about x̂t = 0 to be

ln(1 + x̂t) ≈ ln(1) +
d

dx̂t
ln(1 + x̂t)

∣∣∣∣
x̂t=0

× (x̂t − 0) =
1

1 + x̂t

∣∣∣∣
x̂t=0

× x̂t = x̂t

So now consider the following property, which is extremely useful

x̂t ≈ ln(1 + x̂t) = ln(1 +
xt − x
x

) = ln(
xt
x

) = ln(xt)− ln(x)

To see the utility in this simplification, consider the following

yt = xtzt =⇒ ŷt ≈ ln(yt)− ln(y) =
(

ln(xt) + ln(zt)
)
−
(

ln(x)− ln(z)
)
≈ x̂t + ẑt

This gives us the first in several rules/properties for this process

• yt = xtzt =⇒ ŷt = x̂t + ẑt

• yt = xαt =⇒ ŷt = αx̂t

• yt = f(xt) =⇒ ŷt =
[ f ′(x)
f(x) x

]
x̂t

• yt = xt + zt =⇒ yŷt = xx̂t + zẑt

To get some intuition for the third rule, consider f(xt) = g(xt)
h(xt)

=⇒ ln(f(xt)) = ln(g(xt))− ln(h(xt)). So

ln(f(xt)) = ln(f(x))+
f ′(x)

f(x)
(xt−x), ln(g(xt)) = ln(g(x))+

g′(x)

g(x)
(xt−x), and ln(h(xt)) = ln(h(x))+

h′(x)

h(x)
(xt−x)

by a Taylor series expansion with equality imposed. so if we recognize that ln(f(x)) = ln(g(x)) − ln(h(x)),
then imposing these equalities derived from the Taylor expansion into the original relation with logs you get

f ′(x)

f(x)
(xt − x) =

g′(x)

g(x)
(xt − x)− h′(x)

h(x)
(xt − x) =⇒ xf ′(x)

f(x)
x̂t =

xg′(x)

g(x)
x̂t −

xh′(x)

h(x)
x̂t

A more simple way to see this is also

ŷt ≈ ln(yt)− ln(y) = ln(f(xt))− ln(f(x)) ≈
(

ln(f(x))+
f ′(x)

f(x)
(xt−x)

)
− ln(f(x)) =

f ′(x)

f(x)
(xt−x) =

xf ′(x)

f(x)
x̂t

Example: Consider kt+1 = (1− δ)kt + sAtk
α
t . This means

k̂t+1 =
(1− δ)k

k
̂(1− δ)kt +

sAkα

k
ŝAtkαt Rule 4

= (1− δ)[(̂1− δ) + k̂t] + sAkα−1(ŝ+ Ât + k̂αt ) Rule 1

= (1− δ)k̂t + δAkα−1(Ât + αk̂t) Rule 2

where we initially treat the whole term as one linearized variable and recognized that a linearized constant
is simply 0. Notice this is equivalent to the earlier result in the notes when a Taylor expansion was used.
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Dictionary

Math
fxx is the second derivative of f wrt x
∃ - there exists
∀ - for all
∴ - therefore

Terms
BC - Budget Constraint
CRTS - Constant Returns to Scale: αF (x, y) = F (αx, αy)
FOC - First Order Condition
GR - Golden Rule
HH - Household
LHS/RHS - Left/Right Hand Side
LM - Lagrange Multiplier
s.t - such that
wrt - with respect to
"zero coupon" bond market - Pays out in its entirety at maturity, which for our cases is the next period
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