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These are notes largely compiled from PhD Econometrics classes at the University of Alabama and Duke

University (from Dr. Junsoo Lee, Dr. Traviss Cassidy, Dr. Matt Masten, and Dr. Adam Rosen). The

general content will be the simple statement of key definitions, theorems/lemmas, proofs, and propositions

(with little extraneous discussion). The structure will follow a review on statistics/asymptotics and then

notes on the core topics seen in these classes, such as OLS, IV,m estimation, and hypothesis testing.

Formatting

- First two sections will have their own formatting, reading more like a traditional textbook

- (otherwise) Definitions will be bolded; Lemmas will be underlined; Theorems will be bolded and underlined

- Any lemma/theorem formatted such as (·)∗ will be proven in the appendix.

- This is meant to make the most sense as a retrospective overview. Therefore, the ordering may seem a bit

counterintuitive from an instructing/learning perspective at some points (e.g. how much content is covered

before OLS is explicitly covered).
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Math/Stats/Measure Theory Review

Informally, we consider the measure of a set to be its length. For example, intuitively the measure of the

union of disjoint intervals [a, b], [c, d] should be b−a+d− c. To extend this across more non-trivial examples

with subsets of R, more formally consider that we want a function, call it a measure on R, µ : A −→ [0,∞]

(A is a subset of the power set of R), such that (s.t) we can measure every subset of R, for a given collection

of mutually disjoint sets we have µ(∪∞i=1Ei) =
∑∞
i=1 µ(Ei), two sets have the same µ(·) if they can be made

equivalent by basic transformations (translation, rotations, and reflections), and µ([0, 1]) = 1 (unit interval).

Unfortunately no such function exists. The solution is instead to create a measure function with a domain

that in some sense excludes problematic subsets of R. The most common "solution" is to focus on a partic-

ular type of subset known as a Borel σ−algebra, a type of σ−algebra. The next series of definitions serves

to lay the groundwork for measurably and Borel algebras.

Specifically, A, subset of the power set of X, is an algebra of sets on X if A,B ∈ A =⇒ A ∪ B ∈ A,

B ∈ A =⇒ Bc ∈ A (complement with respect to X), anf X ∈ A. If A also has the property that any

countable family in A satisfies ∪∞n=1An ∈ A then it is a σ-algebra. Consider that the intersection of a col-

lection of σ−algebras is a σ−algebra. This fact allows for a process to generate a unique, most parsimonious

σ−algebra that contains A. Accordingly, define σ(A), the σ−algebra generated by A, as the σ−algebra that

satisfies A ⊆ σ(A), (uniqueness) B is a σ−algebra with B ⊆ A =⇒ σ(A) ⊆ B, and which is precisely equal

to the intersection of all σ−algebras containing A. Combined with a Topology, this yields a

construction of the Borel σ−algebra1. A topology on X is a collection T of subsets of X such that

1. ∅, X ∈ T

2. T is closed under arbitrary unions (if {Ai∈I} is a collection of sets in T =⇒ ∪i∈IAi ∈ T )

3. T is closed under finite intersections (if {Ai}ni=1 is a finite collection of sets in T =⇒ ∩ni∈IAi ∈ T )

Call (X, T ) a topological space. Given (X, T ), B(X), the Borel σ-algebra on X, is simply σ(T ). Note

B(R) = σ({(a, b] : −∞ ≤ a ≤ b <∞}) = σ({(a, b) : −∞ ≤ a ≤ b ≤ ∞}) = σ({(−∞, b] : b ∈ R})

A measure space is a triple (X,A, µ), where X is a set, A is a σ−algebra on X, and µ : A −→ [0,∞] is a

measure on the space where µ(∅) = 0 and µ(∪∞i=1Ei) =
∑∞
i=1 µ(Ei) if {Ei}∞i=1 is a collection of mutually

disjoint subsets. We consider the sets in A to be measurable. A function f : X −→ Y is Borel measurable

if, given a set A open in Y , f−1(A) is a Borel set (f−1(A) = {x : f(x) ∈ A}). Applying these concepts to

probability theory, consider Ω, with σ-algebra F , to be our sample space, where subsets of Ω can be thought

of as events. We say a measure µ for (Ω,F) is a probability measure if µ(Ω) = 1. Here, it’s standard to

use P to denote a probability measure. Thus, we have a probability space by (Ω,F ,P). With respect to this
1Some definitions have the σ−algebra generated by the family of compact sets in X (not equivalent to our definition)



probability space, for A,B ∈ F with P(B) > 0, the conditional probability2 of A given B is P(A|B) = P(A∩B)
P(B)

and A andB are independent (P(A|B) = P(A)) if and only if (iff) P(A∩B) = P(A) ·P(B). Note that if we

have two Borel measurable sets f and g, independence of A andB implies that f(A) and g(B) are independent

by P(f(A) ∈ X, g(B) ∈ Y ) = P(A ∈ f−1(X), B ∈ g−1(Y )) = P(A ∈ f−1(X)) · P(B ∈ g−1(Y )).

A random element is a measurable function on a probability space. If X : Ω −→ RK is a random ele-

ment (codomain being the measurable space (RK ,B(RK)), for k ≥ 2 X is a random vector and for k=1 its

a random variable. This is how "data" can be thought of under a math-based paradigm. We can consider

single realization ω ∈ Ω (the data) with n observations X1(ω), . . . , Xn(ω). If {X1, . . . Xn} are independent

random variables with the same P, then they are an iid (independent/identically distributed) sample. We can

also use Borel measurability to create well-defined environments for analysis. If X is a random variable and

g : R −→ R is Borel measurable on R, then defining Y (ω) = g(X(ω)) (where Y : Ω −→ R) we have that Y is a

random variable. Additionally, all continuous3 functions are Borel measurable. It should be apparent why we

have had all this discussion: Borel is the smallest σ-algebra such that all continuous functions are measurable.

If A ∈ R and we have random variables X andY satisfying P(X ∈ A) = P(Y ∈ A), then X andY have the

same distribution. If they only differ on a set which occurs with probability zero, thenX andY are equivalent.

We can infer from the B(R) result that we are only concerned with probabilities of the form P(X ∈ (−∞, b]).

This motivates the standard, fundamental statistical definitions. Let X be a random variable and define

FX : R −→ [0, 1] by FX(x) = P(X ≤ x) (with x ∈ R). We call FX the cumulative distribution function

(CDF) of X. When the CDF is continuous at x, P(X = x) = 0. If FX is absolutely continuous, then define

fX , the probability distribution function (PDF), by FX(b)−FX(a) =
∫ b
a
fX(x)dx and if fX is continu-

ous at x an equivalent definition is fX(x) = F ′X(x). The support of X, call it S, is the smallest closed set such

that P(X ∈ S) = 1. The expectation4 of a random variable X with respect to (w.r.t) the space (Ω,F ,P)

is E[X] =
∫

Ω
XdP. Equivalently, if E[X] exists, E[X] =

∫
R xdFX(x), and if X is absolutely continuously

distributed then E[X] =
∫
R xfX(x)dx. We refer to E[Xn] as an nth moment and E[(X − E[X])n] as an nth

central moment. The variance of X is its second central moment, or by linearity var(X) = E[X2]− E[X]2.

For a, b ∈ R, var(aX + b) = a2 var(X). When X is a random vector, var(X) = E[(X − E[X])(X − E[X])′]

and the (i, j) element of var(X) is the covariance: cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj ])]. Also for a

square matrix B (with same dimension as X), var(BX) = B var(X)B′.
2Recall/note the inclusion-exclusion formula: P(A ∪B) = P(A) + P(B)− P(A ∩B)
3For topological spaces X andY , a function f : X −→ Y is continuous if for every V open in X, f−1(V ) is open in X
4For information sets F1 ⊆ F2,E[E[X|F2]|F1] = E[X|F1] (L.I.E - Law of Iterated Expectations).

Also E[E[X|F1]|F2] = E[X|F1] since E[X|F1] is know w.r.t F2



When we say X ∼ Q(µ, σ2), this typically means that X is distributed along the "Q"-distribution with

a first moment (mean) of µ and variance σ2. There are exceptions: for instance, the Cauchy distribution

does not have a first moment. The most commonly used distribution is the normal : X ∼ N (µ, σ2) with

PDF fX(x) = 1√
2πσ2

exp(−(x−µ)2

2σ2 ). The standard normal distribution follows X ∼ N (0, 1). Any normal can

be converted to a standard normal (asymptotically) by dividing its difference from the mean by its standard

deviation, the square-root of its variance. The normal distribution is symmetric: fX(µ + x) = fX(µ − x).

Accordingly, the normal distribution has the nice visual property of 68.2% of observations being within one

standard deviation away from the mean (34.1% on either side of µ), 95.4% of observations being away from

two standard deviations, and so on. This property helps illustrate the underlying important of standard

deviations/variance: it’s how much you should reasonably expect an observation to deviate from the mean

(in absolute value). However, for all of these well-behaved characteristics of the normal distribution, there’s

only so much slack with manipulation. Consider X ∼ N (0, 1) with CDF Φ(·). Then for some odd integer a,

the CDF of Y = Xa is the piecewise function FY (x) = Φ(x
1
a ) (x ≥ 0), 1−Φ(|x| 1a ) (x < 0). Raising X to an

even power is even more complicated (consider how to deal with x < 0).

Now that we have introduced notions of asymptotic behavior, we can talk about how to "limit towards" or

arrive at results that we want, and precisely characterize how this happens. A sequence of random variables

{Xn} converges almost surely to a random variable X (Xn
a.s−−→ X) if P(limn−→∞ ||Xn −X|| = 0) = 1.

Similarly, Xn converges to X in probability (Xn
p−→ X) if ∀ε > 0,P(|Xn −X| > ε)→ 0 as n→∞.

Xn converges to X in distribution (Xn
d−→ X) ifXn ∼ Fn,X ∼ F =⇒ Fn(x)→ F (x) (n→∞) ∀x s.t F (x)

is continuous. We can also say Xn
d−→ X if limn−→∞ P(Xn ≤ x) = P(X ≤ x) for all x where continuity holds.

This is also sometimes called weak convergence and denoted (Xn  X). Uniform convergence requires

that some N > 0 will assure that given n > N,Xn − X is arbitrarily small (i.e the difference is less in

magnitude than any ε > 0, w.r.t the given convergence paradigm). We can also introduce ("O") nota-

tion to generalize asymptotic behavior. We say Xn is bounded in probability (Op(1)) if ∀ε > 0 ∃B ∈ R s.t

supn(P(|Xn| > B)) < ε. More generally, if there exists a sequence {rn} of positive numbers and someM ∈ R

such that |Xnrn | < M (∀n) then Xn = Op(rn). If Xnrn
p→ 0 (n→∞) then we say Xn = op(rn).

Next, we can consider some important results using these properties.

(Continuous Mapping Theorem) If X 7→ g(x) continuous on a set C with P(x ∈ C)= 1 then Xn
p→ X

implies that g(Xn)
p→ g(x) and Xn  X =⇒ g(Xn) g(X)

(Slutsky’s Lemma:) Xn  X, Yn
p→ c ∈ R implies Xn + Yn  X + c, XnYn  cX, and Y −1

n Xn  X/c.



(Markov’s Inequality) Suppose E[|X|] <∞. Then for any λ > 0, P(|X| ≥ λ) ≤ λ−1E[|X|]

Proof: Taking expectations of the LHS and RHS of the following gives the result:

1 · 1(λ−1|X| ≥ 1) ≤ λ−1|X| · 1(λ−1|X| ≥ 1) ≤ λ−1|X|

(Chebychev’s Inequality) If E[|X|] <∞ and var(X) <∞, then for λ > 0, P(|X−E[X]| ≥ λ) ≤ λ−2 var(X)

(Delta Method) If rn(xn−µ) X, rn →∞, and g(·) is differentiable at µ, then rn(g(Xn)−g(µ)) g′(µ)X

Proof: More general proof follows by assuming g(·) is twice continuously differentiable.
For some X̃n such that |X̃n − µ| ≤ |Xn − µ|:

g(Xn) = g(µ) + g′(µ)(Xn − µ) + (Xn − µ)2 · g′′(X̃n)/2

Since rn(Xn − µ) is Op(1), Xn − µ = r−1
n Op(1) = op(1)Op(1) = op(1). Therefore,

rn(g(Xn)− g(µ)) = g′(µ)(Xn − µ) + op(1) g′(µ)X

Another important result for Metrics (and Macro) is Jensen’s Inequality, which combines properties of

expectations with properties of functions. But first we must understand what convex and concave means.

A set C is convex if given two points in the set, a line segment joining those points is contained in the set.

More formally, x, x′ ∈ C andα ∈ [0, 1] =⇒ αx + (1 − α)x′ ∈ C. A more intuitive way to think about this

definition is considering a line segment as an interval. WLOG5 let x < x′, meaning the interval [x, x′] could

be defined as {αx + (1 − α)x′} (consider the extreme values α could take). If this interval is a subset of

our set of interest, then the set is convex. Similarly, a function f(·) is convex on the interval I if the set

{(x, y) : x ∈ I, y ≥ f(x)} is convex. f(·) is concave if {(x, y) : x ∈ I, y ≤ f(x)} is convex. Informally, this

definition implies that a line segment connecting two points on a convex function will lie above the graph.

Consider the midpoint (.5f(a) + .5f(b)) of the line-segment connecting f(a) and f(b)): if f(.5a + .5b) lies

above the midpoint the function is convex (you can extend this for α 6= .5). Now we are ready to state the

main result which intuitively follows almost directly from the definition of convex/concave

(Jensen’s Inequality) Suppose f : R −→ R is measurable and that E[X] andE[f(X)] exist. If f(·) is

convex then f(E[X]) ≤ E[f(X)]. If f(·) is concave then f(E[X]) ≥ E[f(X)].

Proof: Assume f(·) is a well-defined convex function; the concave case follows largely by flipping the

inequality signs. Because f(·) is convex, if it’s not differentiable everywhere, worst-case scenario it’s not

differentiable on some countable set of points6, call this set D ⊆ R. Then if E[X] /∈ D, by the definition
5Without Loss of Generality, meaning you could flip the definition (it would not affect the result if notation were switched)
6Intuitively, this is because you can show that the set of all jump discontinuities is a subset of a union of several sets

constructed using sufficiently large neighborhoods of rational numbers (there exists some rational number inside the gap of each
"jump"). Thus it’s a subset of a countable set, so it’s countable



of convex7 we have f(X) ≥ f(E[X]) + f ′(E[X])(X − E[X]). Taking an expected value yields

E[f(X)] ≥ E[f(E[X]) + f ′(E[X])(X − E[X])] = f(E[X]) + f ′(E[X])E[(X − E[X])] = f(E[X])

For the multivariate case, use the transpose of the gradient in place of the derivative (∇f(X)T = [∂f(X)
∂X1

, . . . , ∂f(X)
∂Xn

]).

If the E[X] /∈ D assumption is undesirable, consider an inductive proof to the alternative form of Jensen’s

inequality: λ1f(z1) + · · ·+ λnf(zn) ≥ f(z1λ1 + . . . znλn), where λi ∈ [0, 1] can be considered weights. Using

y =
∑n−1
k=1

λkzk
1−λn , the inductive step here is given by

f(z1λ1+. . . znλn) = f((1−λn)y+λnzn) ≤ (1−λn)f(y)+λnf(zn) ≤ (1−λn)

n−1∑
k=1

λk
1− λn

f(zk)+λnzn =

n∑
k=1

λkf(zk)

Now we finally have enough context start talking about arguably the two most major results in the realm

of "background math" that will be used ad nauseum in Econometrics (and elsewhere in academia). They are

the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT). The version of the LLN of interest

to us says that as long as we can assure iid and the existence of a first moment, the sample mean is a great

approximation (converges in probability) to the expected value. These are relatively weak assumptions so

this is a very nice result to have in our toolkit. The CLT more or less exploits the behavior of the sample

mean and says that asymptotically the difference between the sample mean and the population mean is very

well behaved (normal distribution) when scaled by
√
n. We will first state and prove LLN, then give a bit

more background (Characteristic Functions) needed to state and prove CLT.

(LLN - Strong) If E[|X|] <∞ andX1, . . . , Xn iid copies of X, then Xn
p→ E[X]

Proof: WLOG let E[X] = 0. Pick M > 0 and arbitrary ε > 0. Then we can define

Yi = Xi · 1(|Xi| > M)− E[Xi · 1(|Xi| > M)]

Zi = Xi · 1(|Xi| ≤M)− E[Xi · 1(|Xi| ≤M)]

∴ Xi = Zi + Yi and Xn = Y n + Zn

If we can show Y n, Zn
p→ 0 we are done. By Markov’s/Chebychev’s Inequality and the definition of variance

P(|Zn| > ε) ≤ ε−2 var(Zn) = ε−2n−1E[Z2
i ]

By the triangle and Jensen’s inequalities

|Zi| ≤ |Xi| · 1(|Xi| ≤M) + E[|Xi| · 1(|Xi| ≤M)] ≤ 2M

=⇒ ε−2n−1E[Z2
i ] ≤ ε−2n−14M2 p→ 0

Observe that |X| · 1(|X| > M) ≤ |X| and since E[|X|] <∞, |Xi|1(|Xi| > M)→ 0 as M blows up. Thus

P(|Y n| > ε) ≤ ε−1E[|Y n|] ≤ ε−1E[|Yi|] ≤ 2ε−1E[|Xi| · 1(|Xi| > M)]→ 0

7The function values over an interval are above the values of the tangent line. Here’s a quick sketch of why this is:
convex & α ∈ [0, 1] =⇒ f((1 − α)x + αy) − f(y) ≤ (1 − α)(f(x) − f(y)). Divide by (1 − α)x + αy − y = (1 − α)(x − y) > 0
and note that we get the definition of the derivative as α −→ 1



Let X be a random variable with PDF f(x). Then the characteristic function is defined as

φX(t) ≡ E[exp(itX)] =

∫ ∞
−∞

exp(itx)f(x)dx

If
∫
|φX(t)|dt <∞ then fX(x) = 1

2π

∫∞
−∞ exp(itx)φX(t)dt

(Levy Continuity Theorem) Let Tn have CDF Fn with characteristic function φn(t). Suppose there

exists φ(t) : R −→ C such that φn(t) −→ φ(t) and φ(·) is continuous at 0. Then φ(·) is the characteristic

function of some T with CDF F (·) and Tn
d−→ T

We are now ready to state one of the most important results in statistics that allows for describing distribu-

tion with relatively mild assumptions (assuming iid and first/second moments is almost an afterthought in

most modeling environments and papers).

(Lindeberg-Levy CLT for Variables) Let {Xi} be a sequence of iid variables with E[Xi] = µ < ∞

and var[Xi] = σ2 <∞

=⇒
√
n
Xn − µ

σ

d−→ N (0, 1)

Proof: Let Yi = Xi−µ
σ and Tn = 1√

n

∑n
i=1 Yi. Then the characteristic function of Tn can be defined as

φn(t) = E[exp( it√
n

∑n
i=1 Yi)]. Let ψ(t) = E[exp(itY )] (the characteristic function of Y). Then it follows that

φn(t) = E[
∏n
i=1 exp( it√

n
Yi)] = ψ( t√

n
)n. Now let m(t) = log(ψ(t)) =⇒ log(φn(t)) = n · m( t√

n
). By

established properties of the taylor series expansion around 0

log(φn(t)) = n

(
m(0) +

t√
n
m′(0) +

t2

2n
m′′(0) + o(n−1)

)

By our previous definition of m(·), m′(t) = ψ′(t)
ψ(t) and m′′(t) = −ψ′(t)

ψ(t)2 + ψ′′(t)
ψ(t) . Further note that ψ(0) = 1 and

ψ′(0) = iE[Y ] = 0 because E[Xi] − µ = 0. So log(1) = 0 eliminates the first two terms of the taylor series.

Finally, ψ′′(0) = i2E[Y 2] = −1 because var(Xi) = σ2 and µ is a constant, so 1 = σ2

σ2 = var(Yi) = E[Y 2] (by

the definition of variance since E[Yi] = 0). Now we have m′′(0) = ψ′′(t)
ψ(t) = −1. Combining everything yields

log(φn(t)) = n

(
− t2

2n
+ o(n−1)

)
=⇒ φn(t) −→ E[exp(− t

2

2
)]

Which is the characteristic function of the standard normal distribution. Note
√
nXn−µσ =

√
n
n

∑n
i=1 Yi = Tn.

Therefore by the Levy Continuity theorem we have our desired result. �



Note the importance of
√
n. Say for Tn we used 1

na (for a not necessarily equal to 1
2 ). Then the proof

would collapse to log(φn(t)) = n(− t2

2n2a + o( 1
n2a )) = − t

2

2 n
1−2a + o(n−2a). Therefore if a > 1

2 , the limit of

φn(t) is 0, which is the characteristic function of a degenerate variable. If a < 1
2 , the limit of φn(t) diverges.

(Cramer-Wold Device) Let {Xn} be a sequence of random vectors in RK and let X ∈ RK .

Then Xn
d−→ X iff λ′Xn

d−→ λ′X (for all λ ∈ RK)

Now we can prove the Lindeberg-Levy CLT for vectors.

Proof: Let {Xi} be iid vectors in RK with E[Xi] = µ and var(Xi) = Ω < ∞ (assume Ω is non-singular).

Let λ ∈ RK be an arbitrary fixed vector. By E[λ′Xi] = λ′µ and var(λ′Xi) = λ′Ωλ, from the univariate

CLT result we have 1√
n

∑n
i=1(λ′Xi − λ′µ)

d−→ N (0, λ′XiΩλ) = λ′N (0,Ω). Since we made λ arbitrary, by the

Cramer-Wold device 1√
n

∑n
i=1(Xi − µ)

d−→ N (0,Ω) �.

Finally, there are some linear algebra concepts which are helpful to be aware of. Let A be an m × n

matrix. The transpose of A, denoted by AT , is the matrix whose i-th column is the i-th row of A, or equiva-

lently, whose j-th row is the j-th column of A. Notice that AT is an n×m matrix. We will write AT = (aTji)

where aTji = aij . Notice that the ji-entry of AT is the ij-entry of A. This tells us that the main diagonals

of a matrix and its transpose are the same and that entries of AT are the entries of A reflected about the

main diagonal. Here are a couple of examples.

Properties of the Transpose: Let A and B be appropriately sized matrices and r ∈ R.

Then (AT )T = A,(A+B)T = AT +BT ,(rA)T = rAT ,(AB)T = BTAT .

A positive definite matrix is a symmetric matrix with all positive eigenvalues. More specifically, let A

and x be n × n andn × 1 matricies (respectively). A is positive definite (pd) matrix if ∀x, x′Ax > 0. A is

positive semi-definite (psd) if ∀x, x′Ax ≤ 0. Notationally, for two matricies A andB, A ≥ B iff A−B is psd.

Let X be n× k with full rank. We also have some useful matrices P = X(X ′X)−1X ′ andM = In − P , the

projection and annihilator matrices (respectively). Both P andM are symmetric (P = P ′) and idempotent

(PP = P ). We also see that PX = X,MX = 0, andMY produces the residuals of OLS.



Hypothesis Testing

Wald’s Unifying Theory of Statistical Data Analysis: Consider P the "state of the world": the true

probability distribution. Different actions have different relative value, and one can consider a utility function

that provides an implicit ranking of these actions based on P. Therefore, a decision rule is a function d(·)

mapping our data to an action that is taken. This is the paradigm under which hypothesis testing comes into

play: our decision rule rejects or fails to reject a hypothesis based on some piecewise/threshold of relative

probabilistic performance. Broadly, we want to solve maxd(x) U(P, d(x)), but we can’t because P is unknown.

There are different ways to deal with this issue.

Subjective Bayesian Solution: Impose some belief about P prior to observing any data. This mani-

fests in a prior distribution, π(·), a probability measure. Once we see a realization of the data, the prior is

updated to π(·|x), a new probability measure. Now, expected utility can be determined by integrating over

P given a choice of decision rule and a known prior: maxd(x)

∫
U(P, d(x))dπ(P|x), resulting in the Bayesian

optimal decision. However, the process of choosing this prior is subjective by design, which immediately

creates doubt as to the reasonableness of the choice. Also these models perform much better when P is

known to being in a parametric class of probability distributions (e.g. normal distribution with unknown

mean and variance). The Bayesian approach is ex post because it takes a realization (x of X) as given (what

is seen in the data).

Frequentist Solution: An ex ante approach that ignores the realization of X. Instead, multiple pos-

sible realizations are considered, via considering d(·) as a sampling distribution. The goal here is to

learn about the distribution of d(x) that arises from repeated sampling. Consider a welfare function:

W (P, d) =
∫
U(P, d(x))dP(x), which does not depend on the data. Therefore, instead of maximizing over

a single number (d(x)) the entire function needs to be picked by maxd(·)W (P, d), but this cannot be done

without dealing with P. One approach is to essentially average the average: maxd(·)
∫
W (P, d)dπ(P), where

π is a prior on the set of possible P (P). Another is to look at worst case scenarios for P and pick what

does best when the worst case happens: maxd(·) minP∈PW (P, d). A similar approach – these are thought

of as minimax approaches – is to look at minimizing "regret" from choosing something non-optimal. Let

d∗(P) ∈ argmaxd(·)W (P, d) be the decision rule we’d pick if we knew the true state of the world (infeasible

since we don’t). Then define MaxRegret (a function of d by W (P, d∗(P))−W (P, d). Then we can have a rea-

sonable choice of d by simply choosing the d that minimizes maximum regret. The potentially problematic



aspects of the Frequentist approach come from the need to produce repeated samples (i.e. how do we learn

about the sampling distribution). One obvious way to deal with this is making many assumptions about P.

A more nuanced approach is the to use approximations for the sampling distribution, for instance using the

CLT for large sample sizes.

Wald Hypothesis Testing: Suppose we want to characterize a parameter θ = θ(P). Consider Θ the set of

all possibilities of θ. For testing, Θ is partitioned into two disjoint circumstances: null hypothesis (H0) that

θ ∈ Θ0 and the alternative hypothesis (Ha) θ ∈ Θ\Θ0. Common examples include Θ0 = {θ0} (singleton)

and Θ0 = {θ ∈ Θ : θ ≥ θ0} (one-sided). Hypothesis testing imposes a binary decision rule: 1 for rejecting

the null and 0 for not rejecting. Consider a loss function L = −U and risk function R = −W . Then the risk

function of a hypothesis test decision rule φn is R(P, φn) = L(P, 1)P(φn(X) = 1) + L(P, 0)P(φn(X) = 0).

So the risk only depends on P(φn(X) = 1), which is called the Power function. Generally, the loss function

takes a value of 1 if the decision rule is wrong (type 1 error : null is true but is rejected or type 2 error : null

is false but we did not reject) and 0 otherwise. Another option is weighting the loss of false positives and

false negatives differently: giving a loss of K if there is a type 1 error. A standard choice is K = 19, which

implies a false positive is 19 times worse than a false negative. A standard test for H0 : θ ≤ θ0 is to reject if

the realization lies beyond the K
1+K quantile (.95 for K = 19) of the given distribution.

Neyman-Pearson Hypothesis Testing: Largely a special case of Wald. To find an optimal test, this

approach restricts possible tests and then tries to find the most powerful among the group. First, note that

a test’s size is essentially the maximum likelihood of a false positive: Size = supP3P:θ(P)∈Θ0
P(φn(X) = 1).

So given α ∈ (0, 1) a level α test follows Size(φn) ≤ α. A uniformly most powerful test means that any other

test can’t be more powerful (i.e if θ(P) ∈ Θ0, the value of the power function for any other test will not be

greater). So the idea would be restricting to level alpha then finding the unconditionally most powerful test.

However, proving a test is uniformly most powerful is pretty infeasible. One workaround is restricting the

potential tests even further (i.e. being most powerful among a smaller group). For instance, defining the

group of unbiased tests as ones where the power of a test with θ(P) /∈ Θ0 is greater than or equal to a test

with θ(P) ∈ Θ0.

Applications: Recall α is the size of a test. Let β denote the probability of a false negative (P1(φn(X) = 0)).

The sensitivity of a test, or the probability of a true positive, is 1 − β; the specificity, 1 − α, is the

probability of a true negative. Let the rejection region be defined as the realizations of X leading to

a rejection (R = {x ∈ supp(X) : φn(x) = 1}), so the probability of rejection, or power, is simply



P(φn(X) = 1) = P(X ∈ R). One of the most popular types of tests is a cutoff test with a decision rule based

on a test statistic (1[T (x) > c]), where c is called a critical value. Randomized tests are measurable functions

from the sample to [0, 1]. Essentially this acts as a test statistic, where repeated samples can be drawn under

the assumption that the null is true. For example, we take a draw from a Bernoulli trial, and if we restrict

the codomain of the test to be (0, 1) ⊆ [0, 1], then the decision to reject the null is some fixed probability

(q) or in other words resembles a potentially unevenly weighted coin flip (formally, if the codomain is not

restricted and is instead {0, q, 1}, we can consider the case where fX|θ(P)(x|θ /∈ Θ0) = K · fX|θ(P)(x|θ0) being

resolved by this "coin flip"). These ideas set the table for a discussion on p-values, which have their own

paradigms.

Neyman-Pearson p-values: The Neyman-Pearson p-value is calculated by first restricting attention

to non-randomized test, then defining the p-value as the largest size out of all possible tests under re-

jection. More formally, first let Φ be the set of all possible non-randomized tests of a given null. Let

x ∈ supp(X). Call p(Θ0, x) = infΦ3δn:δn(x)=1 Size(δn) the (N-P) p-value. This definition becomes a bit

clearer when applied to a cutoff test. Consider the case where the critical value is defined by a strictly

increasing function c = cv(·), then a level α test would be c = cv(1 − α). The smaller α gets, the higher

the critical value becomes, meaning the bar to reject is raised, which should follow intuitively. As an ar-

bitrary example, consider T (x) = 1.7 and cv(1 − α) = 1.64. This means there is a magnitude of .06 worth

of "slack". We can think about the p value as defined where there is no slack, or more simply when the

critical value function is exactly equal to the test statistic. Within the 1 − α paradigm, we can say the

p-value solves T (x) = cv(1 − p) =⇒ p = 1 − cv−1(T (x)), which isn’t exactly equivalent to the earlier

definition since this is the special case of cutoff tests. This paradigm can be narrowed even further. Sup-

pose cv−1(t) = P0(T (X) ≤ t), where P0 is the distribution of X under the null. Then cv−1(·) is simply a

CDF of the sampling distribution of the test statistic under the null. This leads to a p-value function of

p(x) = P0(T (X) > T (x)), which is possibly the most used definition. One immediate application of p-values

is to compare them to α. Formally, we can say that 1[p(x) ≤ α] is a level α test of the null of P0 against

the alternative that P = P0. Many people want to extend p-values beyond a simple extension of level α

tests, relating to false positives, and make a more nuanced claim that p-values can be a proxy for the level

of evidence, with a low p-value meaning strong evidence the null is untrue.

Fisherian p-values Fisher’s approach is not really derived from statistical decision theory, unlike Bayesian

and frequentist approaches. Specifically in contrast to the ex ante frequentist approach, there is not a desire

to have certain properties relating to error rates across repeated samples. These procedures are supposed



to work around a single dataset. The approach can be thought of methodically as follows. First, make

enough assumptions such that the sampling distribution of some test statistic is known. Then, observe a

realization x of X and subsequently a value for T (x). Compare this realization to the distribution of T (X)

under the null. Formally, this gives the Fisherian p-value: P0(T (X) > T (x)). The interpretation for this

p-value is its a measure of "abnormality", so large p-values mean T (x) conforms to expectations and low

p − values are unlikely to be seen if the null is true. So we can make a cutoff for rejecting the null (e.g.

p < .05). Note that a formal alternative hypothesis is not specified, and an important criticism is that the

data not being conformable to a null hypothesis doesn’t necessarily imply its more conformable to a different

hypothesis. Although the interpretation of the p-value is different from N-P, we can generalize the Fisherian

approach and show numerical equivalence. Suppose Φ is a collection of hypothesis test indexed by increasing

propensity to reject the null (indexing holds for all x ∈ supp(X)) and let p(X) represent the N-P p-value for

Φ. Define the relation � on supp(X) by x � x′ if and only if p(x) ≥ p(x′). For Fisher with a distribution

P of X = (X1, . . . , Xn), we think of x � x′ as a way of saying ("weak ordering") that x is more consistent

with the hypothesis P than x′, and have a p-value in a pure significance setting (significance probability of

the data relative to the weak order) by P({x′ ∈ supp(X) : x � x′}). This is numerically equivalent to the

previously derived N-P p-value under the � class.

Clarity: P-values are extremely nuanced, but their popularity erodes some of the intricacies of interpreta-

tion. For instance, some falsely claim p-values are probabilities the null holds. This is a Bayesian statement:

this would be derived a test of θ ∈ Θ0 based on a-priori assumptions about the world, but people usually

make such statements after using a frequentist approach. P-values are also not type-1 error rates. This is

false namely because it varies across repeated samples; α is simply used as a barometer fixed beforehand.

Further, as Hubbard and Bayarri (2003) sum up well, often researchers will use N-P methodology but Fish-

erian philosophy. P-values are not measures of the strength of evidence under N-P. It’s also important to

note the implications of the lack of alternative hypothesis and the supporting evidence paradigm. As stated

earlier, the null being weakly supported doesn’t imply an alternative is more supported. Further, a null is

not as necessarily as "supported" as a hypothesis that includes the null and other possibilities, which is a bit

counter-intuitive. In a practical sense, we expect that P(A) ≤ P(A∪B). And formally, if p-values were truly

a metric for supporting evidence, we would expect that Θ0 ⊆ Θ′0 =⇒ p(Θ0, x) ≤ p(Θ′0, x)∀x ∈ supp(X).

But Fisherian p-values do not satisfy this requirement. There are often critiques of the hypothesis testing

status quo in general. For instance, a common null is θ0 = 0, which is largely expected to be false and is a

rather specific point estimate. In addition, there is a difference between statistical significance and whether

something is meaningfully different that can get lost in the weeds. Loss functions have also been criticized as



being too structurally rigid, with a 0-1 paradigm not accounting for the relative distance between θ and θ0.

There is also the problem of multiple testing; the procedures are built on running a single tests and multiple

can skew the results (e.g. running 20 tests on 20 independent samples), leading to the phenomena known as

"p-hacking" where researchers run simulations until they get what they want and therby do not commit to

procedures/properties hypothesis testing has based on the ex ante/"go in blind and commit" foundations.

Confidence Sets: A level α confidence set is a function C(X) from the sample to a subset of Θ such

that ∀P ∈ P, {x ∈ supp(X) : C(x) 3 θ(P)} is P-measurable and 1− α ≤ P(θ(P) ∈ C(X)). These are usually

known as confidence intervals when θ ∈ R. A common misinterpretation of confidence sets is that they

contain the true probability with probability 1− α, and as alluded to in the preceding subsection, this is a

Bayesian way of thinking that is usually misapplied. In fact, the confidence set itself is the random element.

A good analogy is the difference between archery and ring toss. A mistake would be to think of a confidence

set like an archery target, where its sufficiently big enough that the true value (the arrow) will land inside.

Instead, the true value is fixed (like a post in ring toss) and we are "throwing" a confidence set in its direction

trying to capture it. Returning from metaphor land, 1−α gives a large, ex ante probability the confidence set

will contain the true parameter, but once the data is drawn it either contains the true parameter or doesn’t.

This discussion primarily falls under the N-P school of thought. Fisherian sets, which are still analogous, can

be thought of as {θ ∈ Θ : Pθ0(T (X) ≥ T (x)) ≥ α}, the parameter values not rejected by a test comparing

Fisherian p-values to α. This does not rely upon a notion of repeated sampling. Practically, we can attain

confidence sets through finite sample properties, like if we know data to be normally distributed it has certain

properties, or use asymptotics (usually through the CLT) to construct intervals centered around the idea of

deviation in the limit.

Proofs relevant to the applied performance of the sampling distribution and minimax approaches will be

in the appendix.



Identification and Causality

(This section is especially a work in progress)

Say we have population parameters {(Yi, Xi, Ui) ⊆ R3 : ii ∈ I} with a corresponding distribution FY,X,U =

P true. We want to learn about some (population) parameter that’s a function of the distribution, call it

θ(·). However, usually we don’t observe an entire population; we only observe population data, call it h(·)

with realization P data = h(P true). Let Θ be the possible values of θ(·). Then the identified set for θ is

ΘI = {θ ∈ Θ : θ(P )for some P ∈ P s.t h(P ) = P data}. These are all the parameter values that satisfy our

assumptions and are observationally equivalent to the distribution of realized values. If ΘI is singleton, then

it’s point identified, and if ΘI is some non-singleton subset of Θ it’s partially identified. If ΘI is empty, the

assumptions made are too strong and the model is falsified. When we can’t tell whether an assumption is

correct or not, we say its not falsifiable. Models can be falsifiable because of an assumption made on the ob-

serve random variables (e.g. assuming a normal distribution) or assumptions made on unobserved variables.

The unobserved variables are important when trying to learn about causality because we often want to learn

about outcomes we do not see in the data. For example, if we define the function Y (x) = p(x)′β + U as an

approximation to Y , this is falsifiable because it gives an approximation for E[Y |X = x] (by taking the con-

ditional expectation of the function) which we observe in the data. This informs how we can create models

for learning about causality and gauging the validity of them. The big ideas are that we want to learn "how

A affects B" ceteris paribus - holding everything else equal, but the fundamental problem of causal inference

is that we only observe one realization in the data, whereas we would like to have observe two disjoint

outcomes to compare the difference and extrapolate a causal effect.

A unit level causual model consists of dependent variables (y) determined inside the model, covariates/out-

come variables (x andu) determined outside of the model, and functional relations between them known as

structural functions. There are also restrictions on the relationships and values of these variables.

Consider the "all causes" special case: y ∈ R, x ∈ X ⊆ R, and u are a vector of unobservables that can can

take on any value in some set U . For some function g : X × U → R, y = g(x, u). This is an "all causes"

model because if we know the values of g(·)’s inputs we can perfectly predict y. This gives a basic paradigm

for terminology to develop

Define the unit level causal effect of x on y to be g(x1, u0)− g(x0, u0), in other words the change in y given

the change in x holding u constant. We can also define the marginal level causal effect of x on y to be

[∇xg](x0, u0) = ∂g(x0,u0)
∂x

The treatment response function Yi(·) : X → R is given by Yi(x) = g(x, Ui), where for any fixed value of



x Yi(x) is a potential outcome. So a unit level causal effect for i is simply Yi(x1) − Yi(x0), and learning

about this relationship is the main goal of causal analysis. In the all causes model, Yi already has a realized

outcome of Yi = Yi(Xi). So the value of the potential outcome function when its input is different from its

realization (i.e. x 6= Xi) are called counterfactual outcomes. And the difference between a counterfactual

and a realized outcome can be thought of as a "status quo" treatment effect

In the all causes model and in general, we say that when the unit level causal/marginal effects vary with differ-

ences in Ui, the causal effects are heterogeneous. So it would then follow that there is a distribution of causal

effects. Variation in X among individuals is considered observed heterogeneity, and variation in U is unob-

served. In general, we can define δ(x0 → x1) = Y (x1)−Y (x0). Implicit in this notation is that Y (x) = g(x, U)

without the individual subscript is a random variable, as its not based on an individual. This gives us the

distribution of treatment effects by DTE(t, x0 → x1) = FY (x1)−Y (x0)(t) = P(Y (x1)− Y (x0) ≤ t)

Suppose X is binary. Then P(Y (1) > Y (0)) = 1 − DTE(t, x0 → x1) is proportion who benefit from being

treated and E[δ(x0)] = EU ([∇xg](x0, U)) is the average partial effect of X on Y. The ATE - average treat-

ment effect (by linearity) is EU [g(x1, U)]− EU [g(x0, U)] = E[Y (x1)]− E[Y (x0)], with the average structural

function (ASF) EU [g(x, U)] = E[Y (x)]. Note ASF(x) 6= E[g(x, U)|X = x]. We also can define average treat-

ment effect on treated (ATT) and average treatment effect on the untreated (ATU) by E[Y (1) − Y (0)|X =

1] andE[Y (1) − Y (0)|X = 0] (respectively), yielding ATE = ATTP(X = 1) + ATUP(X = 0). Suppose we

also observe covariates W , then we can define conditional ATE (CATE) by E[Y (1)−Y (0)|W = w]. There is

also an additively separable, where Y (x) = m(x) + U . Letting Ui be fixed, this is a homogeneous treatment

effects model since Yi(x1)− Yi(x0) = m(x1)−m(x0). The marginal effect also doesn’t depend on Ui.

QTE section

The rest of our analysis will assume that X is binary (so realizations can be formulated by Yi = Yi(1)Xi +

Yi(0)(1−Xii)) and the possible treatment values (x0 andx1) are degenerate (i.e. we only observe one value

for each if it occurs). Then if Y is the set of logically possible values for potential outcomes, the identified set

for Yi(x) for x 6= Xi andx ∈ X is Y. This is a formalization of the fundamental problem of causal inference:

basically the data is completely unhelpful on its own for determining counterfactual outcomes.

To get some more information, we will look at marginal and joint distributions of potential outcomes. We

can write the marginal distribution (i.e. CDF of potential outcomes)) as the sum of the relative probability

of treatment "x" times the conditional CDF of the realization and the probability non-treatment "x" times

the conditional CDF of the potential outcomes, in other words

P(Y (x) ≤ y) = P(Y ≤ y|X = x)P(X = x) + P(Y (x) ≤ y|X 6= x)P(X 6= x)



Note that the only object we don’t observe in the data is P(Y (x) ≤ y|X 6= x), a distribution of counterfactual

outcomes. So this is essentially a missing data problem. Similarly, the identified set for the joint distribution

of two different potential outcomes FY (x1),Y(x0)(·, ·) (given treatments x1, x0 ∈ X ) is simply the set of all

joint CDFs whose marginal CDFs are defined above. This implies that we can’t point identify the CDF of

potential outcomes for all treatments: the more we learn about the distribution of P(Y (x) ≤ y) the less we

know about the distribution of other potential outcomes. The simple and highly relevant question of whether

outcomes change with (counterfactual) treatment cannot be answered, therefore what we have before us in

both the marginal and joint distributions is essentially a missing data problem.

Some context on the missing data issue: let Z be a binary variable reflecting whether we observe Y or not,

since observability is not necessarily independent of the outcome (otherwise we can basically just pretend like

there is no missing data). Assume we observe the distribution of Y |(Z = 1) and marginal distribution of Z.

Then the identified set for θ ≡ P(Y = 1) is [P(Y = 1|Z = 1)P(Z = 1),P(Y = 1|Z = 1)P(Z = 1) + P(Z = 0)].

This is because by the LIE P(Y = 1) = P(Y = 1|Z = 1)P(Z = 1) + P(Y = 1|Z = 0)P(Z = 0), and since

P(Y = 1|Z = 0) is completely not identified from the data, the bounds on this object are [0, 1]. Thus,

P(Y = 1) is point identified if P(Z = 0) = 0 and partially IDd when P(Z = 0) ∈ (0, 1). A common solution

to deal with this is to impute missing observations with sampling from the observed data. However, in the

case of causal inference, there is an important difference between the distribution of observed outcomes and

distributions of hypothetical, and in turn P(Y ≤ y|X = x)−P(Y (x) ≤ y) can be thought of as selection bias.

Now applying these concepts to the world of potential outcomes, define Y norm(x) = Y (x)−ymin
yymax−ymin

. This al-

lows us to bound any given Y by [0, 1]. Using normalized Y , the identified set for E[Y (x)] is E[LB(x),UB(x)] =

[E(Y = 1|X = x)P(X = x),E(Y |Z = 1)P(X = x) + P(X 6= x)]. Thus, the identified set for the ATE is

[LB(x1) − UB(x0),UB(x1) − LB(x0)]. Note that the best (tightest) width we can get is 1, meaning 0 will

lie in the interval and we can’t definitively say one treatment is better than the other from the data. More

generally we have the bound [E[Y |X = x1]P(X = x1)−E[Y |X = x0]P(X = x0) + 0 · P(X 6= x1)− 1 · P(X 6=

x0),E[Y |X = x1]P(X = x1) − E[Y |X = x0]P(X = x0) + 1 · P(X 6= x1) − 0 · P(X 6= x0)], so the width is

P(X 6= x1) + P(X 6= x0) = 2− (P(X = x1) + P(X = x0))

Since data alone doesn’t help very much, we have to consider other alternatives, the first of which is random

assignment : X ⊥⊥ {Y (x) : x ∈ X}, which point identifies FY (x) if the joint distribution (X,Y ) is known.

The joint distribution of potential outcomes is still only partially identified because we can’t simultaneously

observe a pair of outcomes. Another relevant issue is how covariates affect treatment assignments, or more

specifically the propensity by researchers to assume X ⊥⊥ {Y (x) : x ∈ X}|W .



M-Estimation

Suppose we have an iid sample, Z1, . . . , Zn. θ̂ is called an m-estimator if it solves

max
θ∈Θ

Q̂n(θ) = max
θ∈Θ

Q(Z1, . . . , Zn; θ)

Where Q(·) is the objective function and Θ is a family of parameters. This definition is commonly

rewritten using a sample estimator of an objective function, where the estimator is derived by maximizing a

known, real-valued function mθ(·) by

Q̂n(θ) =
1

n

n∑
i=1

mθ(zi)

Inarguably the most commonplace m-estimator is OLS, where mθ(zi) = −(yi − x
′

iθ)
2 (with zi = (yi, xi)).

Suppose the data (Z = (Z1, . . . , Zn)) has a joint distribution with θ (i.e. a pdf) of pθ(zi) = f(zi; θ), where∫
f(z; θ)dz = 1. This parameter θ indexes members of a family of distributions, such as {pθ : θ ∈ Θ}. Then

we can extrapolate another common m-estimator, MLE, as mθ(zi) = log(pθ(zi)).

(Consistency of m-estimators) If there exists Q0(θ) such that i) Qn(θ) is uniquely maximized at θ0

ii) Θ compact iii) Q0(θ) is continuous iv) Q̂n(θ) converges uniformly to Q0(θ). Then θ̂ p−→ θ0.

Proof: For any ε > 0, since θ̂n maximizes Q0(θ), Q̂0(θ̂) > Q̂n(θ)−ε/3. By the uniform convergence property,

with probability approaching 1 (WPA 1) we have Q0(θ) > Q̂0(θ̂)− ε/3 and Q̂0(θ0) > Q0(θ0)− ε/3.

Therefore, WPA 1
Qn(θ̂) > Q̂n(θ)− ε/3 > Q̂0(θ̂)− 2ε/3 > Q0(θ0)− ε

Now we have the issue of establishing separability: we have shown that the objective function using

θ0 and θ̂ will converge, but as presently summarized we can’t rule out that θ̂ isn’t "far away from" θ0 and

happens to produce a comparable value of the objective function in the limit. Let N be any open subset of Θ

such that θ0 ∈ N (think of this as an arbitrary neighborhood). Define A = Θ∩N c. Since A is compact and

by the unique maximization and continuity conditions, for some θ∗ ∈ A: supθ∈AQ0(θ) = Q0(θ∗ < Q0(θ0).

Choose ε = Q0(θ0)−Q0(θ∗). Then it follows WPA 1 Qn(θ̂) > Q0(θ∗), so θ̂ ∈ N . Since we made N arbitrary,

θ̂ is in every neighborhood of θ0 (with respect to the probability limit). �

The first condition is known as an identification condition. This is because θ0 is identified if for all θ 6= θ0

we have pθ 6= pθ0 . To see why this is important consider Xi under a Bernoulli distribution with parameter

θ = (β, δ). Then pθ(xi) = (β + δ)xi (1− (β + δ))1−xi . Then θ = (.1, .2) and θ = (0, .3) gives the same result.

So estimation of this parameter would not be unique or informative. Returning to the first condition consider



(MLE ID Lemma) If θ0 is identified and E[| log(f(y|x; θ))|] < ∞ for all θ, then Q0 = E[log(f(y|x; θ))]

has a unique max at θ0. (Think of f(y|x; θ) = f(z; θ))

Proof: Unique max exists if for all θ 6= θ0, Q0(θ0)−Q0(θ) > 0. By the strictness of Jensen’s Inequality

Q0(θ0)−Q0(θ) = E[− log

(
f(y|x; θ)

f(y|x; θ0)

)
] > − log(E[

f(y|x; θ)

f(y|x; θ0)
]) = − log(

∫
f(y|x; θ)

f(y|x; θ0)
f(y|x; θ0)dz) = − log(

∫
f(y|x; θ)dz) = 0

Another type of m-estimation is GMM: Generalized Method of Moments. Suppose we have an mθ(·)-type

function g(·, ·) : RK × RL −→ RL that satisfies g0(θ0) = E[g(z, θ0)] = 0 (where θ0 is the "true parameter").

Suppose Ŵ is a psd weight matrix, where we assume it converges in probability to some constant psd matrix

(W ) by LLN. Then θ̂ is the GMM estimator if it maximizes

Q̂n(θ) = −
(

1

n

n∑
i=1

g(zi, θ)

)′
Ŵ

(
1

n

n∑
i=1

g(zi, θ)

)
= −(ĝn(θ))

′
Ŵ ĝn(θ)

(GMM ID Lemma) Using GMM conditions, ifWg0(θ) 6= 0 for θ 6= θ0 then θ0 uniquely maximizes−g0(θ)
′
Wg0(θ).

Proof: Define R such that W = R
′
R. So if θ 6= θ0 then R

′
Rg0(θ) 6= 0. Therefore by pre-multiplication

Rg0(θ) 6= 0 =⇒ −g0(θ)
′
Wg0(θ) = −(Rg0(θ))

′
(Rg0(θ)) < 0 = −g0(θ0)

′
Wg0(θ0)

Now that we have established how to identify the true parameters for some of the m-models, we need to

think about showing the usefulness of the estimators of the true parameters. The following lemma makes it

easier to formally complete the consistency theorem tenets to show that the the estimators are consistent.

(Convergence Lemma) If the data are iid, Θ compact, a function a(zi, θ) continuous at each θ ∈ Θ with

probability 1, and there exists a function d(·) such that ||a(z, θ)|| < d(z) for all θ and E[d(z)] < ∞. Then

E[a(z, θ)] is continuous and supθ∈Θ || 1n
∑n
i=1 a(zi, θ)− E[a(z, θ)]|| p−→ 0

(MLE Consistency) Suppose the data Z are iid with pdf f(zi; θ0) and i) θ0 identified ii) Θ compact

with θ0 ∈ Θ iii) log((f(zi; θ)) continuous at each θ ∈ Θ with probability 1 iv) E[supθ∈Θ | log((f(z; θ))|] <∞.

Then θ̂MLE
p−→ θ0.(Proven from the convergence lemma completing the m-estimator consistency theorem).

(GMM Consistency) Assume iid data and that the previous GMM conditions and identification hold. If i)

Θ compact with θ0 ∈ Θ ii) g(z, θ) continuous at each θ ∈ Θ with probability 1 iii) E[supθ∈Θ ||g(z, θ)||] <∞,

then θ̂GMM
p−→ θ0



Proof: Let ĝn(θ)−g0(θ) = GGn.By the triangle and Cauchy-Schwartz inequalities (also that Ŵ is symmetric)

Q̂n(θ)−Q0(θ) ≤ |[GGn]
′
ŴGGn|+ |g0(θ)

′
(Ŵ + Ŵ

′
)GGn|+ |g0(θ)

′
(Ŵ −W )g0(θ)|

≤ ||GGn||2||Ŵ ||+ 2||Ŵ ||||g0(θ)||||GGn||+ ||g0(θ)||2||(Ŵ −W )||

where simplifying the first line yields the triangle inequality.Using the convergence lemma, supθ∈Θ |Q̂n(θ)−

Q0(θ)| p−→ 0 from properties of Ŵ , g0(θ);the lemma/given info complete the remaining consistency tenets �.

(Asymptotics of m-estimators) Suppose θ̂ is consistent for θ0 and that i) θ0 ∈ Int(Θ), ii) Q̂n(θ) is

twice continuously differentiable in a neighborhood (N ) of θ0, iii)
√
ndQ̂n(θ0)

dθ

p−→ N (0,Σ), iv) there exists

H(·) continuous at θ0 with supθ∈N ||
d2Q̂n(θ)

dθdθ′
−H(θ)|| p−→ 0, v) H = H(θ0) is non-singular.

Then
√
n(θ̂ − θ0)

p−→ N (0, H−1ΣH−1)

Proof: Since θ̂ is consistent, there exists an open convex set N with θ0 ∈ N such that θ ∈ N WPA 1. Thus,

also WPA 1 dQ̂n(θ̂)
dθ = 0 by the F.O.C and i)-iii). By MTV, there exists θ∗n in a properly defined interval of

θ̂ and θ such that

0 =
dQ̂n(θ̂)

dθ
=
dQ̂n(θ0)

dθ
+
d2Q̂n(θ∗n)

dθdθ′
(θ̂ − θ)

=⇒
√
n(θ̂ − θ) =

(
d2Q̂n(θ∗n)

dθdθ′

)−1(
−
√
n
dQ̂n(θ0)

dθ

)
= (Ĥ(θ∗n))−1

(
−
√
n
dQ̂n(θ0)

dθ

)
We have a condition to take care of the second RHS term, but need to be careful about how we deal with the

first (see the discussion of MLE asymptotics for more detail). Remember that θ∗n is defined in an interval,

and by consistency this interval is shrinking as n grows,so θ∗n
p−→ θ0.By iv) and the triangle inequality,WPA 1

||Ĥ(θ∗n)−H|| ≤ ||Ĥ(θ∗n)−H(θ∗n)||+ ||H(θ∗n)−H|| ≤ sup
θ∈N
||Ĥ(θ)−H(θ)||+ ||H(θ∗n)−H|| p−→ 0

Therefore by iii), the CMT, and Slutsky
√
n(θ̂ − θ0)

p−→ H−1N (0,Σ) = N (0, H−1ΣH−1) �.

For MLE asymptotics, we will use some different notation and go through a more informal proof (that

will break down some of the steps in the last proof), assuming conditions as we go along and stating them

formally at the end. We will temporarily use θ for the true parameter. Let l̇θ = ∂
∂θ log pθ (known as the

score function) and l̈θ = ∂
∂θ l̇θ. The MLE solves

∑n
i=1 l̇θ(xi) = 0. By the MVT,for some θ̃ between θ̂n and θ

0 =

n∑
i=1

l̇θ̂(xi) =

n∑
i=1

l̇θ(xi) +

n∑
i=1

l̈θ̃(xi)(θ̂n − θ)

=⇒
√
n(θ̂n − θ) = −

(
1

n

n∑
i=1

l̈θ̃(xi)

)−1
1√
n

n∑
i=1

l̇θ(xi)



We can’t use the LLN because l̈θ̃(xi) is a function of {xi} and thus not independent across i. So to

establish the convergence of 1
n

∑n
i=1 l̈θ̃(xi) note that

1

n

n∑
i=1

l̈θ̃(xi)− E[l̈θ] =
1

n

n∑
i=1

l̈θ̃(xi)− E[l̈θ̃] + E[l̈θ̃]− E[l̈θ] = (∗) + (∗∗)

Note that E[l̈θ̃] can be viewed as a mapping of θ to E[l̈θ] that integrates with respect to randomness in Xi.

Since θ̃ is in a de-facto shrinking neighborhood, consistency for θ̂n implies that θ̃ is also consistent for θ. If

we assume continuity, then E[l̈θ̃]
p−→ E[l̈θ] so (∗∗) p−→ 0.

And by the uniform LLN (assuming compactness of set of estimators, continuity, and that there exists

a function with finite first moment that is greater than |l̈θ(xi)| for each xi).

| ∗ | ≤ sup
θ
| 1
n

n∑
i=1

l̈θ(xi)− E[l̈θ]|
p−→ 0

Therefore 1
n

∑n
i=1 l̈θ̃(xi)

p−→ E[l̈θ] so by the CMT ( 1
n

∑n
i=1 l̈θ̃(xi))

−1 p−→ (E[l̈θ])
−1.

To deal with the other term, note that
∫
pθdx = 1. Differentiating both sides of this expression with

respect to θ (assuming pθ is differential in θ, for example that the support of Xi doesn’t depend on θ) yields

0 =
∂

∂θ

∫
pθdx =

∫
ṗθdx =

∫
p̈θdx

We also have l̇θ = ∂
∂θ log pθ = ṗθ

pθ
and by extension l̈θ = p̈θ

pθ
−
(
ṗθ
pθ

)2

. Then E[l̇θ] =
∫
ṗθ
pθ
pθdx =

∫
ṗθdx = 0.

Since
∫
p̈θdx = 0

E[l̈θ] = E[
p̈θ
pθ

]− E[

(
ṗθ
pθ

)2

] = −E[(l̇θ)
2]

So for θ that’s not a scalar, define the fisher information matrix by

−E[l̈θ] = E[l̇θ l̇
′

θ] ≡ Iθ

So by CLT 1√
n

∑n
i=1 l̇θ(xi)

d−→ N (0, Iθ) and therefore by Slutsky and (E[l̈θ])
−1 = (Iθ)

−1

√
n(θ̂n − θ)

d−→ I−1
θ N (0, Iθ) = N (0, I−1

θ )



Let E[Tn] = θ. To show efficiency among unbiased estimators (var[Tn] ≥ Iθ), note that

E[Tn l̇θ] =

∫
Tn
ṗθ
pθ
pθ =

∫
Tnṗθ =

∂

∂θ

∫
Tnpθ =

∂

∂θ
Tn =

∂

∂θ
θ = 1

By E[l̇θ] = 0 and the Cauchy-Schwartz inequality

(E[Tn l̇θ])
2 = (E[(Tn − E[Tn])l̇θ)])

2 ≤ E[(Tn − E[Tn])2]E[(l̇θ)
2] = var[Tn]Iθ

Combining these results, 1 ≤ var[Tn]Iθ =⇒ I−1
θ ≤ var[Tn], so MLE is asymptotically efficient

Now we will state explicitly all the conditions needed for these results (using θ0 as true parameter)

(Asymptotics of MLE) Suppose all the earlier conditions for consistency of MLE are satisfied. Also that

i) θ0 ∈ Int(Θ), ii) f(z; θ) is twice continuously differentiable in θ and f(f ; θ) > 0 in a neighborhood (N ) of

θ0, iii)
∫

supθ∈N ||
df(z;θ)
dθ ||dz <∞ and

∫
supθ∈N ||

d2f(z;θ)

dθdθ′
||dz <∞, iv) J ≡ E

[d log(f(z;θ0))
dθ

d log(f(z;θ0))

dθ′

]
exists

and is non-singular, and v) E
[

supθ∈N ||
df(z;θ)
dθ ||

]
<∞. Then

√
n(θ̂ − θ0)

d−→ N (0, J−1) �.

(MLE Variance Estimation Lemma) Using the conditions about for MLE asymptotics and the score func-

tion, define Ĵ1 = 1
n

∑n
i=1 l̇θ̂(zi)l̇θ̂(zi)

′
; Ĵ2 = 1

n

∑n
i=1 l̈θ̂(zi); Ĵ3 = 1

n

∑n
i=1 J(xi, θ̂)J(xi, θ̂)

′
= E[l̇θ̂(z)l̇θ̂(z)

′ |x]

Then (Ĵ2)−1 p−→ J−1. If there exists a neighborhood N of θ0 such that E[supθ∈N ||l̇θ||2] <∞

then (Ĵ1)−1 p−→ J−1. If J(x, θ) is continuous at θ0 with probability 1 and E[supθ∈N ||J(x, θ)||] <∞

then (Ĵ3)−1 p−→ J−1. If the model is mispecified, then (Ĵ2)−1Ĵ1(Ĵ2)−1 is consistent for the (asym) variance.

(Asymptotics of GMM) Suppose the GMM definition hold, the GMM consistency conditions hold, and

we have iid data. Then if i) θ0 ∈ Θ, ii) g(z, θ) is continuously differentiable in a neighborhood of θ0(N ),

iii) E[||g(z, θ0)||2] <∞, iv) E[supθ∈N ||
dg(z,θ)
dθ ||] <∞, v) Gw = G

′
WG is nonsingular, where G ≡ E[dg(z,θ0)

dθ ]

=⇒
√
n(θ − θ0)

d−→ N (0, (Gw)−1GWΩWG(Gw)−1)

where Ω = E[g(z, θ0)g(z, θ0)
′
]

Proof: Using the usual sample analog, by the FOC, symmetry, MVT (for some θ̃ between θ0 and θ̂)

0 = 2Ĝ
′

n(θ̂)Ŵ ĝn(θ̂) =⇒ 0 = Ĝ
′

n(θ̂)Ŵ ĝn(θ0) + Ĝ
′

n(θ̂)Ŵ Ĝn(θ̃)(θ̂ − θ0)

=⇒
√
n(θ̂ − θ0) = −

(
Ĝ
′

n(θ̂)Ŵ Ĝn(θ̃)

)−1

Ĝ
′

n(θ̂)Ŵ
√
nĝn(θ0)

By CLT,
√
nĝn(θ0)

d−→ N (0,Ω). To see details for the other term, look at the MLE Asymptotic proof.

Note that by the triangle inequality, ||Ĝ′n(θ̂)Ŵ Ĝn(θ̃) − Gw|| ≤ ||Ĝ
′

n(θ̂)Ŵ Ĝn(θ̃) − Ĝ
′

n(θ0)Ŵ Ĝn(θ0)|| +

||Ĝ′n(θ0)Ŵ Ĝn(θ0) − Gw||, and the RHS converges in probability to 0 by iv), θ̃ p−→ θ0, continuity, LLN,

and properties of of W. Therefore, by the CMT and Slutsky we have our desired result �.



(Consistency of GMM Variance)∗ If the conditions for GMM Asymptotics hold, if g(z, θ) is continu-

ous at θ0 and E[sup θ ∈ N||g(z, θ)||2] <∞ then V, a term using the sample analogs all the same components

of the asymptotic variance of GMM, is consistent for (Gw)−1GWΩWG(Gw)−1.

(GMM Variance Efficiency Lemma) Assume the aforementioned necessary GMM conditions. The weight

as Ω−1 yields the most efficient GMM Variance (asymptotic variance collapses to (G
′
Ω−1G)−1 ).

Proof: For W 6= Ω−1,can be seen by distributing each individual line that

(Gw)−1GWΩWG(Gw)−1 − (G
′
Ω−1G)−1 = (Gw)−1G

′
WΩW (Gw)−1 −Gw(G

′
Ω−1G)−1Gw)(Gw)−1

= (Gw)−1G
′
WΩ.5(I − Ω−.5G(G

′
Ω−1G)−1G

′
Ω−.5)Ω.5WGGw)−1

= A(I −B)A
′

Where A and B are appropriately defined matricies. Since B is symmetric and idempotent, so is I-B. Thus

A(I −B)A
′

= A(I −B)(I −B)
′
A
′

= (A(I −B))(A(I −B))
′

which is psd �.

However, Ω depends on θ0, which is obviously problematic for estimation. Instead, we will look at at "2-step"

GMM, leading to a generalization of "k-step" GMM. This process basically involves using several GMM es-

timations to yield desirable asymptotic results.

(2-Step and K-Step GMM) For 2-Step GMM, first let Ŵ be the identity matrix. Let θ̃∗ solve the GMM

with this weight matrix. Then set Ω̂ = 1
n

∑n
i=1 g(ziθ̃

∗)g(ziθ̃
∗)
′
. Note that this is consistent for Ω (shown in

previous results). Then construct a new GMM estimation (θ̂) using Ŵ = Ω−1, and this leads to the efficient

result of
√
n(θ̂ − θ0)

d−→ N (0, (G
′
Ω−1G)−1). The 2-step estimator also satisfies nĝ(θ̂)

′
Ŵ ĝ(θ̂)

d−→ χ2
dim(θ0).

3-Step GMM would be using the 2-Step estimator to construct a new estimation of Ω, and by iteration you

can define K-Step GMM. As K −→ ∞, this becomes the continuously uppdated estimator (CUE) for GMM

which solves minθ∈Θ ĝ(θ)
′
Ω̂−1(θ)ĝ(θ)

Let mθ = E[dg(z,θ0)
dθ ]

′
W dg(z,θ0)

dθ = G
′
W dg(z,θ0)

dθ . Similarly let m = G
′
Wg(z, θ0) and recall that J = E[l̇θ0 l̇

′

θ0
].

(MLE vs GMM Asymptotics) Given MLE/GMM asymptotics conditions (notably, observational distri-

bution is in family f(X; θ)), if for all θ ∈ N (a neighborhood of θ0)
∫

supθ∈N ||g(z, θ)||2f(z; θ)dz is bounded

then the difference in the asymptotic variance for GMM and MLE (E[mθ]
−1E[mm

′
]E[mθ]

−1 − J−1) is psd.
Proof: Note that E[g(z, θ0)] = 0 iff 0 =

∫
g(z, θ)f(z; θ)dz

∣∣
θ=θ0

. Thus by premultiplying G
′
W

0 =
d

d(θ)

∫
g(z, θ)f(z; θ)dz

∣∣∣∣
θ=θ0

=

(∫
dg(z, θ)

d(θ)
f(z; θ)dz +

∫
g(z, θ)

df(z; θ)

d(θ)
dz

)∣∣∣∣
θ=θ0

= E[mθ] + E[ml̇
′

θ0 ]

=⇒ E[mθ]
−1E[mm

′
]E[mθ]

−1−E[l̇θ0 l̇
′

θ0 ]−1 = E[ml̇
′

θ0 ]−1E[mm
′
]E[ml̇

′

θ0 ]−1−E[l̇θ0 l̇
′

θ0 ]−1 = E[ml̇
′

θ0 ]−1E[UU
′
]E[ml̇

′

θ0 ]−1

which is psd (where U = m− E[ml̇
′

θ0
]E[l̇θ0 l̇

′

θ0
]−1 l̇θ0). So the result follows by distributing terms �.



Bootstrap

The Bootstrap is a model that embodies frequentest philosophy that involves estimating the distribution

of an estimator or a test statistic by resamping the data. First, we will define some useful notation. Let

F0 denote the population distribution (population CDF) of (Y,X). We say that we are interested in the

"true parameter" θ(F0) = θ0. Typically, we use Fn, and estimator of F0, to estimate the true parameter

by θ(Fn) = θ̂n. We can think of the test statistic Tn = Tn(X1, . . . , Xn) as being some function of θ̂n. This

allows for this formulation of a finite sample CDF of Tn: Gn(t, F0) ≡ P[Tn ≤ t]. Thus, we can generalize

this to G∞(·, F ) as the asymptotic distribution from F. We say that Tn is asymptotically pivotal if its

asymptotic distribution doesn’t depend on F (define pivotal similarly for Gn).

Executing the bootstrap can be generalized by the following three steps

Step 1 Draw a random sample of observations {X∗i }ni=1 from Fn

Step 2 Compute T ∗n from {X∗i }ni=1

Repeat Steps 1 and 2 B times (Monte Carlo procedure)

Step 3 Choose c∗ to be the 1− α quartile of all the calculated T ∗n and create a confidence interval

In terms of how Fn is chosen it can broadly be non-parametric ( 1
n

∑n
i=1 1[Xi ≤ x]) or parametric

(F (·; θ̂n)), where both are estimates of F0(·) = F (·; θ0). Roughly speaking, we say that Gn(·, Fn) is consistent

if it converges to G∞(·, F0). More formally

(Consistency of Bootstrap definition) Let Pn denote the joint probability distribution of {Xi}ni=1. The

bootstrap estimator Gn(·, Fn) is consistent for G∞(·, F0), where F0 ∈ F (finite dimensional family indexed

by θ) if for all ε > 0 we have limn−→∞ Pn[supt |Gn(t, Fn)−G∞(t, F0)|] = 0.

(Sufficient Bootstrap Consistency) Gn(·, Fn) is consistent if for each ε > 0,F0 ∈ F , and metric ρ on F

i) limn−→∞ Pn[ρ(Fn, F ) > ε] = 0, ii) G∞(t, F ) is continuous in t for each F ∈ F , and iii) for any t and

sequence {F̃n} ∈ F such that limn−→∞ ρ(F̃n, F0) = 0, Gn(t, F̃n) −→ G∞(t, F0).

(T-Statistic Bootstrap Consistency) Let {Xi}ni=1 be an iid sample and {X∗i }ni=1 be the bootstrap sam-

ple. For a sequence of functions gn and a sequence of numbers tn and σn, let gn = 1
n

∑n
i=1 gn(Xi) with

Tn = gn−tn
σn

and T ∗n =
gn−g

∗
n

σn
(using g∗n = 1

n

∑n
i=1 gn(X∗i )). With P ∗n being the probability distribution

induced by the bootstrap, then G∗n(t) = P ∗n(T ∗n ≤ t) is consistent for Gn(t) = Pn(Tn ≤ t) iff Tn
d−→ N (0, 1).

In some settings |Gn(·, Fn) − Gn(·, F0)| converges faster than |G∞(·, Fn) − Gn(·, F0)|, which can be prob-

lematic for how we are conceptualizing the ordering of convergence. To address this, we will define the

Smooth Function Model (SFM) by letting Tn =
√
n[H(Z) − H(µZ)], where Z = (Z1, . . . , ZJ)

′
, µ(Z) =



E[Z], and a function H (and Z) satisfying some smoothness conditions8 (each ZJ is the sample mean of

Zj(X)). These conditions are more than sufficient to show that Tn = ∂H(µZ)
′√
n(Z − µZ) + op(1) (where

∂H(z) = ∂H(z)/∂z). By the CLT Tn follows a standard normal asymptotic CDF, so by the Berry-Esséen

theorem supt |Gn(t, F0)−G∞(t, F0)| = O( 1√
n

). Also, under SFM we have bootstrap consistency by the last

theorem, and we can also show the stronger result that supt |Gn(t, Fn)−G∞(t, F0)| a.s−−→ 0.

(SFM Bootstrap Approximation) Under the Cramér condition9, from a Taylor-Edgeworth expansion

Gn(t, F0) = G∞(t, F0) + n−.5g1(t, F0) + n−1g2(t, F0) + n−1.5g3(t, F0) +O(n−2)

Gn(t, Fn) = G∞(t, Fn) + n−.5g1(t, Fn) + n−1g2(t, Fn) + n−1.5g3(t, Fn) +O(n−2)

uniformly in t, where the gi(·) are various functions of moments

By ∆gi = gi(t, Fn)−gi(t, F0), this gives usGn(t, Fn)−Gn(t, F0) = G∞(t, Fn)−G∞(t, F0)+n−.5∆g1+O(n−1.5)

almost surely uniformly over t. From the continuity of G∞ and Fn − F0 = O(n−.5) almost surely uniformly

over the support of F0, the bootstrap has an error of size O(n−.5). This means the bootstrap is as good of

an approximation of the finite sample distribution as the asymptotic distribution.

(Intuition about the Bootstrap) Here is some general guidance on how/when to implement the bootstrap.

1. Use bootstrap to estimate distribution of asymptotically pivotal statistic or its critical value whenever

available. Don’t use bootstrap on a non-asymptotically pivotal statistic when something asymptotically

pivotal is available.

2. Bootstrap models on dependent data, semi-/non-parametric estimators, and/or non-smooth estimators

require extra caution.

8H(z) is 6-times continuously partially differentiable with respect to any mix of elements in z in a neighborhood of µZ ,
∂H(z)/∂z 6= 0, and the expectation of the product of any 16 components of Z exists ("16" from the Edgeworth-Taylor expansion)

9lim sup||t||−→∞ |E[exp(it′Z)]| < 1



Non-Parametric Estimation

First, some more trivial matters to establish for total clarity. We consider U in these settings to be unobserved

heterogeneity. In many of the following settings, we will be interested in a moment function Y = m(X,U) =

m(X, θ, U), where m and the conditional distribution of U |X are known for θ ∈ Θ. Also, note that for

conditional distributions given X andU ⊥⊥ X, the distributions are not equivalent for different realizations

of X. Finally, E[U |X] ≡ E[U |X = x] ∀x ∈ supp(X).

Referring to our definition of m(·) above, if the parameter space Θ is infinite dimensional then the model

is non-parametric. If instead Θ = M ∪ I, where M is finite dimensional and I is infinite dimensional,

then the model is semi-parametric. To make these definitions a bit more concrete, consider the following

examples. Assuming a linear, separable model Y = Xβ + U,U ⊥⊥ X, andU ∼ N (β, σ2), then we can learn

about the U |X distribution by the finite parameter set (β, σ2), so the model is parametric. If instead

we have a linearly separable model but the only other think we know is E[U |X] = 0, then the model is

semi-parametric. One final example will motivate how we circumvent potential application issues. Consider

a partially linear model of Y = Xβ + λ(Z) + U , where E[U |X,Z] = 0 and λ(·) is a parametric function.

Then by L.I.E we have E[Y |Z] = E[X|Z]β+λ(Z)+0 so therefore Y −E[Y |Z] = (X−E[X|Z])β+U . Denote

this expression by (*). Our "idea" is to run non-parametric estimation of E[Y |Z] andE[X|Z], then plug this

into (∗) and then run linear regression. This would manifest in the following way

X discrete =⇒ E[Y |X = x] =
E[X · 1X=x]

P(X = x)
=

E[X · 1X=x]

E[1X=x]

X continuous =⇒ E[Y |X = x] =

∫
xf(y|x)dy =

∫
yf(y|x)f(x)

f(x)
dy =

∫
yf(y, x)

f(x)
dy

Assume X is univariate continuously distributed with density f(·). We want an estimate f̂(x0)
p−→ f(x0).

We can exploit the fundamental theorem of calculus and mean value theorem (∃c ∈ [a, b] s.t f ′(c)(b− a) =

f(b)− f(a)), specifically that for small b− a its midpoint will be an acceptable approximation of c, and get

the naive estimate for the density by

P(X ∈ [a, b]) =

∫ b

a

f(x)dx =⇒ P(X ∈ [x0 ± h]) =

∫ x0+h

x0−h
f(x)fx ≈ 2h · f(x0)

=⇒ f̂(x0) = P(X ∈ [x0 ± h])/2h =
1

2h

1

n

n∑
i=1

1xi∈[x0±x]

However, the true form is f(x0) = lim
h→0

P(X ∈ [x0 ± h])/2h. In the naive estimate, h is fixed. We need h

to be a converging term. More specifically, to satisfy the LLN, we our "bandwidth object" hn to converging to

0 at a more measured pace relative to the growth of n (i.e hn ·n→∞). So f̂(x0) = 1
hnn

∑n
i=1 1xi−x0∈[−hn,hn]

can be considered as an alternative. More generally, we can consider a class of kernel functions to replace



the indicator function that take the form K(xi−x0

hn
). Often, we will want to consider more restricted classes

of estimators, for instance K(·) that satisfy
∫
K(ψ)dψ = 1,

∫
ψ2K(ψ)dψ < ∞, |ψ| · K(ψ) → 0 (ψ →

∞), sup
ψ
, and

∫
K2(ψ)dψ < ∞. We will show that the MSE → 0 with the help of the first two assumptions

along with K(·) being symmetric (i.e. these are sufficient conditions for consistency)

Proof: Want to show (WTS) that MSE(f̂(x0), f(x0)) = bias2 + var→ 0. We have

Bias = E[
1

hn
K(

xi − x0

hn
)]− f(x0) =

∫
1

hn
K(

x− x0

hn
)f(x)dx− f(x0) =

∫
K(ψ)f(x0 + ψhn)dψ − f(x0)

using a change of variables with ψ = x−x0

hn
(so dψ = dx/hn). By a Taylor expansion∫

K(ψ)[f(x0)+hnψf
′(x0)+

1

2
(hnψ)2f ′′(x0)+. . . ]dψ =

∫
K(ψ)f(x0)dψ+

∫
K(ψ)hnψf

′(x0)dψ+

∫
K(ψ)

1

2
(hnψ)2f ′′(x0)dψ+. . .

If we assume f(·) 2nd order cts diff at x0 with f ′′(·) <∞, and the initial assumptions10, the above becomes

f(x0) + f ′(x)hn

∫
K(ψ)ψdψ +

1

2
h2
nf
′′(x0)

∫
K(ψ)ψ2dψ + · · · = f(x0) + 0 +O(h2

n) +O(h4
n) + . . .

By substituting the simplification of the Taylor expansion, bias2 = O(h4
n) (hpn > hqn ∀ int. p > q > 0). Also,

var(f̂(x0)) =
1

nhn
f(x0)

∫
K2(ψ)dψ + o(

1

nhn
) =⇒ var(f̂(x0)) = O(

1

nhn
)

by a similar calculation. Thus, MSE= O(h4
n) +O( 1

nhn
)→ 0 by our assumptions on hn �.

Implicit in the proof is the result that h2
n

√
nhn → 0 =⇒

√
nhn(f̂(x0)−E[f̂(x0)])

d→ N (0, f(x0)
∫
K2(ψ)dψ)

If we define risk as MSE, then we showed it’s O(h4
n) +O( 1

nhn
). Let risk at a point (x) and integrated risk be

Rx =
1

4
σ4
kh

4
n(f ′′(x))2 + f(x)

∫
K2(x)dx+O(

1

n
) +O(h6

n)

and R =

∫
Rxdx =

1

4
σ4
kh

4
n

∫
(f ′′(x))2dx+

∫
K2(x)dx+O(

1

n
) +O(h6

n)

where σ2
k =

∫
x2K(x)dx and we assume

∫
f(x)2dx is bounded.

Everything til now has assumed that X is univariate. If we relax this assumption and allow X ∈ Rd, d ≥ 1,

if we look in a "ball" (multi-dimensional neighborhood) of x0, we now have an analogous result that began

with this analysis by P(x ∈ Bn(x0)) ≈ chdnf(x0) =⇒ 1
nh1...hd

∑n
i=1 Πd

j=1K(
xij−x0j
hj

). So it’s useful to define

Kd = Πd
j=1K(·). Thus, f(x0, y) = 1

nhd

∑n
i=1K(yi−y0hn

)Kd(
xi−x0

hn
)

10bolded assumption 1, symmetry, and bolded assumption 2 for the first, second, and third term respectively



Causal Graphs

Consider a graph with a disjoint partition that includes the set of nodes XC andXE . Consider the ob-

ject P(XE |do(Xc = xc), where this represents a probability object conditional on fixing/forcing the sub-

population to be xc (creating a sub-set, not selecting one from the default). If we wanted to think of this in a

visual/graph sense, this transformation can be thought of as first eliminating any arrows coming into nodes

in Xc, then setting their values to xc (accordingly) and calculating the resulting distribution of XE . If using

x′ 6= xc yields a different value for this object, then say XC has a causal effect on XE . To be explicitly clear

about notation, P(XE |Xc = xc) can be considered probabilistic conditioning; this is simply a population

object (the conditional distribution). P(XE |do(Xc = xc) is causal conditioning; this is a counterfactual

object (something we do not observe in the data).

Explicitly define P(Y |do(T = t)) =
∑
x P(Y |T = t,Pa(T ) = x)P(Pa(T ) = x), where Pa(·) is parents11 of X

To make use of this object, which we can think of as the causal effect of T on Y , we need to define

some additional terminology so we can represent the causal effect in a way that works in applied settings.

For all of these definitions, assume that G is an acylclic, directed graph with vertex set V that includes

single-nodes T, Y , and let W contain all other verticies (W = V ∩ (T ∪ Y ). Define this as causal graph

(CG) vertex partitioning. A collider is a vertex on a path that has at least two incoming edges (on that

path). Say that T andY are backdoor d-connected by a vertex set Z ⊂W iff ∃ a simple, undirected path

U ≡ T ←− {ui}ni=1 → Y such that for C, the set of verticies that are colliders with respect to U i) ∀j s.t

uj ∈ C, either uj or a descendent of uj is in Z and ii) ∀j s.t uj /∈ C =⇒ uj /∈ Z. Say that T andY are

backdoor d-separated by Z iff they are not backdoor d-connected by Z. We also can say that if T andY

and d-separated by Z, then they are blocked by Z (the converse does not necessarily hold in general, but for

our purposes we only care when it does). Finally,
(
(Y ⊥⊥ T ) | C

)
BD if C blocks every path from T to Y that

includes an arrow into T . Now we present the main result, which keep in mind relies on all previous defini-

tions of objects (e.g. Z ⊆ W ). This result is important because it allows for the mathematical formulation

of the causal effect of T on Y without using counterfactual objects.

Theorem: (Backdoor Criterion) If T andY are backdoor d-separated by Z and no node in Z is a

descendent of T then

P(Y |do(T = t)) =
∑
z

P(Y |T = t, Z = z)P(Z = z)

11Parents are direct ancestors (i.e. they are directly adjacent)



Proof (#1): We have by the definition P(Y |do(T = t)) =
∑
x P(Y |T = t,Pa(T ) = x)P(Pa(T ) = x). Denote

this (1). To simplify notation a bit, consider instead Pa(T ) = S. Further, consider that we don’t want to be

restricted to the entire parent set. Instead, we would like to condition on a different set, Z. Therefore, we

first can rewrite (1) to get a simpler, equivalent12 definition (2)

P(Y |do(T = t)) =
∑
x∈S

P(Y |t, x)P(x)

Consider the following two assumptions: a) (Y ⊥⊥ S)|(T,Z) and b) (T ⊥⊥ Z)|S. If a) and b) hold, we can

then say (2) is equivalent to the following

P(Y |do(T = t)) =
∑
x∈S

P(x)
∑
z∈Z

P(Y |t, z)P(z|t, x) =⇒ P(Y |do(T = t)) =
∑
z∈Z

P(Y |t, z)P(z)

because the first equation follows from conditioning on Z using assumption a) and the second equation fol-

lows because assumption b) implies P(z|t, x) = P(z|x). Note that the second equation, which we can denote

(3), is equivalent to what we are trying to prove. So if we can prove that the back-door criteria conditions

implies a) and b), we are done! b) follows plainly from the "no descendent of T" assumption because after

conditioning on the parents of T , Z will not be able to have a dependent relationship on T unless it was a

descendant (this is also known as the Markov property). To see that the backdoor d-separated assumption

implies a), consider a brief proof by contradiction. First, assume there is a path between a parent of T and

Y that is not blocked by T or Z. It cannot be a direct path because then it would be blocked by T (it

would need to go through T to get to Y since its a parent of T ). However, it cannot also be a backdoor path

because Z blocks every path going into T (which would start with a node in the parent set). Since there

are no other path types, our original assumption must have been invalid. Therefore, the backdoor criteria

conditions imply a), and we have sufficient conditions for equivalence of (1) and (3) �.

Proof (#2): This proof is similar but the approach is a bit different. However, we will rely on nota-

tion and results from the previous proof to make it easier. Again Pa(T ) = S. Also, recall assumptions a)

and b), and that we proved that the backdoor criteria implies that these hold. Finally, consider again the

equation (1). Now, consider that if we have a probability object P (A), for a non-empty vertex set B this is

equivalent to
∑
b∈B P (A, b) because its simply diving up the probability object into parts. So therefore (1)

12Note that Y here could be written as Y = y, and further that all lowercase lettering imply something similar. For instance,
lowercase z relates to the larger set Z. If there is any confusion, compare the result of the theorem to (3) and note they are
equivalent



is equivalent to

P(Y |do(T = t)) =
∑
x

[
P(S = x)

∑
z

(
P(Y,Z = z|T = t, S = x)

)]
By the definition of joint probability

P(Y,Z|T = t, S = x) = P(Y |T = t, S = x, Z = z)P(Z = z|T = t, S = x)

which means

P(Y |do(T = t)) =
∑
x

[
P(S = x)

∑
z

(
P(Y |T = t, S = x, Z = z)P(Z = z|T = t, S = x)

)]

invoking assumption a)

P(Y |do(T = t)) =
∑
x

[
P(S = x)

∑
z

(
P(Y |T = t, Z = z)P(Z = z|T = t, S = x)

)]

and invoking assumption b)

P(Y |do(T = t)) =
∑
x

[
P(S = x)

∑
z

(
P(Y |T = t, Z = Z)P(Z = z|S = x)

)]

Since
∑
x P(S = x)

(
P(Y |T = t, Z = Z)P(Z = z|S = x)

)
= P(Z = z)

P(Y |do(T = t)) =
∑
z

P(Y |T = t, Z = z)P(Z = z)

as desired �.

A digression on cycles and simple paths: These results rely on the definitions that assume a simple path.

But one may wonder why we are able to do this. We will consider a formal and informal proof of this

fact. Consider first a proof by contradiction. That is, given G, a DAG with CG partitioning, there is a

non-simple, undirected path T ←− {u}ni=1 → Y that is not blocked by Z ⊂ W , which is a vertex set that

backdoor d-separates T andY . The implication of this is that this path gets around the blocking induced

by Z by repeating vertices. But this is a contradiction; because G is a DAG, such a path would either have

to eventually arrive at a vertex in Z or already be blocked off at an earlier point by a vertex in Z, which

is backdoor d-separating. In other words, in a DAG, every non-simple undirected path that starts with an

arrow into T and ends in an arrow into Y has an an analogous simple path, and by analogous we mean



that the cycle is blocked off by whatever vertex completes the cycle (for example if a path that contains

the sequence A → B → C is blocked, then A → B ← D → E ← B → C is also blocked, otherwise there

would be a contraction). An informal proof can be given in the form of an analogy of driving. If one is

trying to drive from point A and point C, lets say they have a choice along the way of turning left and

going into a "one horse town" that has one street which is a dead end or turning right and going onto the

highway to point C. If they turn left and go into the town, they will have to turn around and come back.

So there is no point in considering that route. Further, if the right turn onto the highway is blocked (let’s

say by construction), turning left will not lead the car into a route where you can get to the destination. To

distill this issue even further, the aspect of simple paths comes down to distance vs. displacement. For

the backoor criteria, we do not care about the distance of the path. We only care about the displacement:

the net movement. Because we assume a DAG, considering cycles can only add to the distance, but the

displacement can never be different if we only consider simple paths.
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