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Dynamic Programming: Why?

Beauty of DP: take a function with an infinite dimensional vector of choice variables
{yt ∈ Rk}t≥0 and represent it as a function with one vector of choice variables {y ∈ Rk}
But we need to make sure such a representation exists
▶ Largely, what that means is that the Bellman setup has a fixed point (like f (x) = x)
▶ Every first year Macro class: proof that, under palatable assumptions, Bellman

representation of lifetime utility maximization problem has a fixed point
▶ The distinction is the Bellman operator maps functions to functions
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Dynamic Programming

Bellman operator:

(T v)(x) = max
y

{
F(x,y)+βv(x′)

}
s.t x′ = g(x,y)

A fixed point w.r.t this operator is T v = v.

If we don’t have a fixed point, the Bellman operator just returns some function

In practice, we want to find the fixed point. To add onto the beauty, if we give the
Bellman operator any initial guess (function), we will find it

T v0 = v1 =⇒ T v1 = v2 =⇒ ··· =⇒ lim
n

T vn = v

This is the contraction map property

3 / 21



Dynamic Programming: Iteration Example

Let’s see this in action with basic asset accumulation model w/ inelastic utility
c = a− s; a′ = Rs. Let F(a,s) = (a−s)1−σ

1−σ
. Plug z(x) = 0 in Bellman operator

=⇒ (T z)(a) = max
s

{F(a,s)}= F(a,s∗)

In this case s∗ = 0.

So we have a new function, call it z1 = a1−σ

1−σ
. Let r = R−1

=⇒ (T z1)(a) = max
a′

{
(a− ra′)1−σ

1−σ
+β

(a′)1−σ

1−σ

}
= z2(a)

Iteration: For all ε > 0, ∃N s.t n > N =⇒ ||zn − zn−1||< ε
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Dynamic Programming: Iteration w/ Policy Function
We can also take a look at the previous example through the lens of a policy function
Policy function: state→ (optimal choice of) control

In other words, let π(x) = y∗ be the policy function. Then

(T v)(x) = max
y

{F(x,y)+βv(g(x,y))}= F(x,π(x))+βv
(
g(x,π(x))

)
In our previous example we had z2(a) = maxa′

{
(a−ra′)1−σ

1−σ
+β

(a′)1−σ

1−σ

}
. We could also write

FOC: (a− ra′)−σ = β (a′)−σ =⇒ π
1(a) =

a
1+ r

=⇒ z2(a) =
(a− rπ1(a))1−σ

1−σ
+β

π1(a)1−σ

1−σ

Which leads to

z3(a) = (T v2)(a) = max
a′

{
(a− ra′)1−σ

1−σ
+β

[
(a′− rπ1(a′))1−σ

1−σ
+β

π1(a′)1−σ

1−σ

]}
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Dynamic Programming: Proof Guide

▶ We can use Blackwell’s Theorem because of Theorem of the Max (key result: T

maps continuous functions to continuous functions)
▶ Blackwell’s Theorem tells use T is a contraction map

▶ Key Assumptions: Monotonicity and Discounting

▶ Contraction Mapping Theorem: given any continuous, function v0, we can generate
a sequence using vn = T vb−1 = T nv0, which limits to a fixed point v

▶ If X convex, Γ : X → X well-defined (non-empty, compact, and continuous), and
objective function bounded and continuous, this fixed point is unique.
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Dynamic Programming: Summarizing/Bellman Equation

All the hard work we’ve done is to earn the right to just write the following

v(x) = max
y

{
F(x,y)+βv(x′)

}
s.t x′ = g(x,y)

This is the Bellman equation. From now on you can start here, though you may have to
say why you’re able to (does problem satisfy assumptions from last slide)
Something to unpack in Econ context: we don’t always control the evolution of all states
Endogenous state variables are contained within y.
For instance, household treats aggregate capital as exogenous, and both HH and social
planner have no control over exogenous, stochastic processes

7 / 21



Dynamic Programming: Full Example

Model: Habit Persistence. The motivation is people generally dislike change and unlike
some models, the comovement of Lt ,Ct is not restricted (Barro-King Critique)

Let At+1 = R(At − ct). Say agents want to maximize
∞

∑
t=0

β
tu(ct ,ct−1)
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Dynamic Programming: Full Example

There are two state variables
▶ yesterday’s consumption (ct−1)
▶ today’s assets (At )

We cannot change anything about these values.

They are the result of decisions made in the previous period.
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Dynamic Programming: Full Example

There are two control variables:
▶ today’s consumption (ct )
▶ tomorrow’s assets (At+1)

Essentially, we have to decide how much we want to spend vs. how much we will save

However, once we’ve decided how much to spend, that automatically/implicitly
determines how much we will save (everything left over from today’s assets).
And vice versa.
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Dynamic Programming: Full Example

Another way of putting it: say you have At in your bank account.
▶ Then you decide to spend ct .
▶ Then you have At − ct left in your bank account, which earns interest R

▶ So tomorrow you will have R(At − ct)

▶ (Here R > 1 –an interest rate of 3% implies R = 1.03, for instance)
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Dynamic Programming: Full Example

My approach is usually to substitute things out when given the chance.
So let r = R−1. Then ct = At − rAt+1.
This means our new problem is

∞

∑
t=0

β
tu(At − rAt+1,ct−1)
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Dynamic Programming: Full Example

To put this in terms of dynamic programming, we formulate the Bellman equation

Two parts of Bellman: utility we get today and utility we will get from the future.

Specifically, if we choose At+1 today
▶ we get utility u(At − rAt+1,ct−1)

▶ Then tomorrow, At+1 is now a state variable (so is ct ), so we make a decision for
At+2 based on the new states.

▶ Then the period after that, At+2 becomes a state variable and so on.

The bellman equation says that as we make this choice over and over again, we must be
using the same rule or logic to make these decisions.
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Dynamic Programming: Full Example (arriving at Bellman)

Formally, let At
> = {At+1,At+2, . . .} be the set of all assets beyond period t.

The value function returns the value of utility (expected value in stochastic setups)
when the optimal path is followed given initial state variables.

So here

v(At ,ct−1) = max
At
>

{
∞

∑
i=0

β
iu(At+i − rAt+1+i,ct−1+i)

}
Note that the indexing is flexible; the "argmax" can remain the same, for instance:

argmax
At
>

{
∞

∑
i=0

β
iu(At+i − rAt+1+i,ct−1+i)

}
= argmax

At
>

{
∞

∑
i=0

β
t+ku(At+i − rAt+1+i,ct−1+i)

}
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Dynamic Programming: Full Example (arriving at Bellman)
Therefore, substituting for ct−1+i when i > 0, we have

v(At ,ct−1) = max
At
>

{
∞

∑
i=0

β
iu(At+i − rAt+1+i,ct−1+i)

}

= max
At+1

{
u(At − rAt+1,ct−1)+max

At+1
>

{ ∞

∑
i=1

β
iu(At+i − rAt+1+i,At−1+i − rAt+i)

}}
This last line implies that for any fixed integer k ≥ 0

v(At+k,ct+k−1) = max
At+1+k

{
u(At+k − rAt+1+k,ct+k−1)+ max

At+1+k
>

{ ∞

∑
i=1+k

β
iu(At+i+k − rAt+1+i+k,At−1+i+k − rAt+i+k)

}}
Moreover, for k = 1 this simplifies to

v(At+1,ct) = max
At+2

{
u(At+1 − rAt+2,At − rAt+1)+max

At+2
>

{ ∞

∑
i=2

β
iu(At+i − rAt+1+i,At−1+i − rAt+i)

}}
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Dynamic Programming: Full Example (arriving at Bellman)

Continuing our substitution process, we have (let v(·) = v(At ,ct−1) )

v(·) = max
At
>

{
∞

∑
i=0

β
iu(At+i − rAt+1+i,ct−1+i)

}

= max
At+1

{
u(At − rAt+1,ct−1)+max

At+1
>

{ ∞

∑
i=1

β
iu(At+i − rAt+1+i,At−1+i − rAt+i)

}}

= max
At+1

{
u(At − rAt+1,ct−1)+βmax

At+2

{
u(At+1 − rAt+2,At − rAt+1)+max

At+2
>

{ ∞

∑
i=2

β
iu(At+i − rAt+1+i,At−1+i − rAt+i)

}}
︸ ︷︷ ︸

= v(At+1,ct ) = v(At+1,At−rAt+1)

}

= max
At+1

{
u(At − rAt+1,ct−1)+βv(At+1,At − rAt+1)

}
Important note: I’m assuming existence here (you will rigorously prove that in class)
On exam: when asked to write down Bellman, start here!
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Dynamic Programming: Full Example

Returning to the derivation for our earlier problem, we ended with

v(At ,ct−1) = max
At+1

{
u(At − rAt+1,ct−1)+βv(At+1,At − rAt+1)

}
Taking FOC

ru1(At − rAt+1,ct−1) = β

(
v1(At+1,At − rAt+1)− rv2(At+1,At − rAt+1)

)
Every time you see a vi (a derivative of the value function), you need to replace that.
Let v(t+1) = v(At+1,At − rAt+1), meaning v(t) = v(At ,ct−1).
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Dynamic Programming: Full Example

Take the derivative of v(t) with respect to the variables in t.

For example, the derivative with respect to the first variable is v1 (t).

If you take all the variables in v1 (t)

▶ move them forward one period (e.g, change t −1 to t in your expression)
▶ the envelope theorem says you will have an expression for v1 (t+1).
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Dynamic Programming: Full Example (Envelope Theorem)

Here is a more general way of phrasing that.

Let ti be the ith variable in t. Let xt denote all the variables in a given derivative of a
value function. Define G(xt) =

∂v(t)
∂ ti

. Then

vi (t) = G(xt) =⇒ vi (t+1) = G(xt+1)

General Envelope Theorem: Derivative of the value function H(x,π(x)) w.r.t xi is equal
to the derivative of the Lagrange w.r.t xi evaluated at the optimum

19 / 21



Dynamic Programming: Full Example (Envelope Theorem)

Returning to our problem, this implies

v1 (t) = u1(At − rAt+1,ct−1)+βv2 (t+1) and v2 (t) = u2(At − rAt+1,ct−1)

These are our two envelope conditions. Notice that you can update the first one by
using the second. The first envelope condition becomes

v1 (t) = u1(At − rAt+1,ct−1)+βu2(At+1 − rAt+2,At − rAt+1)

20 / 21



Dynamic Programming: Full Example

Plugging this into the FOC and subbing back in consumption (and R = r−1)

u1(ct ,ct−1)+βu2(ct+1,ct) = Rβ [u1(ct+1,ct)+βu2(ct+2,ct1)]

Or if you prefer to leave assets in, you get a longer expression

ru1(At − rAt+1,ct−1) = β [u1(At+1 − rAt+2,At − rAt+1)

· · ·+βu2(At+2 − rAt+3,At+1 − rAt+2)− ru2(At+1 − rAt+2,At − rAt+1)]

Aside: this is a case where Lagrange multiplier isn’t just marginal utility
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