
Macro - 7020: TA Session 1

Paul Bousquet

University of Virginia

August 2023

1 / 10

Taylor Expansion

▶ Taylor’s theorem tells us the following

f (xt) = f (x)+ f ′(x)(xt − x)+
f (2)(x)

2!
(xt − x)2 +

f (3)(x)
3!

(xt − x)3 + . . .

where the expansion is considered "at x"
▶ usually we expand around the steady state (x∗) in the context of Macro

▶ For smooth functions, the magnitude of the terms dissipates quickly with n

▶ So the bumbling idiots in economics usually feel they can simply write

f (xt) = f (x)+ f ′(x)(xt − x) and f (xt ,yt) = f (x,y)+ fx(x,y)(xt − x)+ fy(x,y)(yt − y)

where equality is imposed but it’s really an approximation.

2 / 10

Log(-)Linearization
▶ The usual definition for a (log) linearized variable is x̂t =

xt−x
x

▶ Think about this as relative deviation from the steady state.
▶ Value: non-relative numbers are arbitrary. Also, cycles and shocks.

▶ First order Taylor expansion about x̂t = 0

ln(1+ x̂t)≈ ln(1)+

(
d

dx̂t
ln(1+ x̂t)

∣∣∣∣
x̂t=0

)
(x̂t −0) =

(
1

1+ x̂t

∣∣∣∣
x̂t=0

)
x̂t = x̂t

"valid" since we consider x̂t to be small in magnitude
▶ So now consider the following property, which is extremely useful

x̂t ≈ ln(1+ x̂t) = ln
(

1+
xt − x

x

)
= ln

(xt

x

)
= ln(xt)− ln(x)

3 / 10

Still Log-Linearizing

▶ Now we have x̂t ≈ ln(xt)− ln(x). So for instance

yt = xtzt =⇒ ŷt ≈ ln(yt)− ln(y) =
(

ln(xt)+ ln(zt)
)
−
(

ln(x)− ln(z)
)
≈ x̂t + ẑt

This gives us the first in several rules
▶ yt = xtzt =⇒ ŷt = x̂t + ẑt product rule
▶ yt = xα

t =⇒ ŷt = α x̂t power rule
▶ yt = f (xt) =⇒ ŷt =

[f ′(x)
f (x) x

]
x̂t function rule

▶ yt = xt + zt =⇒ yŷt = xx̂t + zẑt sum rule
▶ These are: incredibly useful, all you need, and (mostly) transparent

▶ Implicit, (mathematically) trivial, but important rule: linearized constant = 0
▶ Rule 3 Proof Appendix

4 / 10

The Brutal Truth about LL..

▶ Taylor series expansions in econ are not about mathematical precision
▶ Jensen’s inequality? Never heard of her

▶ Write equality signs. Just do it.
▶ The last slide I went from ≈ to = when writing "rules". I’m never going back
▶ For this year, don’t worry. But for future: "does this matter?" is good for research

▶ To add onto the ingrained grainyness..
▶ "black box": people say log-linearize and magically a solution appears
▶ Because there’s lots of messy math behind the scenes, can be hard to implement

▶ I have been taught a ton of different ways to do this over the years. Here are in my
opinion the best two: rule based and brute force

5 / 10

Method 1: Rule Based (or The Method of Big Hat)
▶ Intuitive and step by step: just apply the rules over and over

▶ yt = xtzt =⇒ ŷt = x̂t + ẑt

▶ yt = xα
t =⇒ ŷt = α x̂t

▶ yt = f (xt) =⇒ ŷt =
[f ′(x)

f (x) x
]
x̂t

▶ yt = xt + zt =⇒ yŷt = xx̂t + zẑt

▶ Example: Consider kt+1 = (1−δ)kt + sAtkα
t . This means

k̂t+1 =
(1− δ)k

k
̂(1−δ)kt +

sAkα

k
ŝAtkα

t Rule 4

= (1−δ)[(̂1−δ)+ k̂t]+ sAkα−1(ŝ+ Ât + k̂α
t) Rule 1

= (1−δ)k̂t + sAkα−1(Ât +α k̂t) Rule 2

▶ key is treating entire term as one linearized variable and then "shrinking the hat"
6 / 10

Method 2: Brute Force
▶ Just compute (some intuition from Taylor but gets fuzzy when thinking about constants)

0 = f (xt ,yt ,zt) =⇒ 0 = fx(x,y,z)xx̂t + fy(x,y,z)yŷt + fz(x,y,z)zẑt

▶ Breaking this down: set everything equal to 0. Call this expression f (. . .)
▶ Say you have k variables {xi,t}k

i=1
▶ Log-linearizing is

0 =
k

∑
i=1

fxi(ss) · xix̂i,t

▶ Each term: partial derivative of f w.r.t xi evaluated at the steady states (x1, . . . ,xk)

multiplied by xi · x̂i,t (steady state xi times linearized xi,t)
▶ Returning to our kt+1 = (1−δ)kt + sAtkα

t example (so 0 =−kt+1 +(1−δ)kt + sAtkα
t)

0 =−1× kk̂t+1 +
(
1−δ +αsAkα−1)× kk̂t + skα ×AÂt

=⇒ k̂t+1 = (1−δ)k̂t + sAkα−1(Ât +α k̂t)

7 / 10

Which method do I use?

▶ Try on your own and see what your brain likes best
▶ For most people, brute force will be best (cleaner)
▶ But always remember the rules! Brute force can be cumbersome in simple cases
▶ Say you want to linearize δxt

▶ Rules-based immediately gives you x̂t (just use product rule)
▶ Remember: "hat" treats all objects equally. Can’t think about constants until it’s isolated

▶ Brute force only really makes sense with an equation. So you have to redefine yt = δxt

=⇒ 0 =−yŷt + δxx̂t

and then you have to realize/recognize the steady state of yt is δx
▶ "Realizing" is often an essential simplifying step and source of struggle with LL

8 / 10

Practice!
▶ For reference, recall: 0 = ∑

k
i=1 fxi(ss) · xix̂i,t

▶ yt = xtzt =⇒ ŷt = x̂t + ẑt

▶ yt = xα
t =⇒ ŷt = α x̂t

▶ yt = f (xt) =⇒ ŷt =
[f ′(x)

f (x) x
]
x̂t

▶ yt = xt + zt =⇒ yŷt = xx̂t + zẑt

1. yt =−xt

2. yt = (xt +β zt)
α

3. ct + kt+1 − (1−δ)kt = Atkα
t ℓ

1−α
t

4. How does #3 simplify if you know steady states c = γk and A, ℓ= 1

5. ct+1 = β
[
ct
(
αAtkα−1

t+1 +1−δ
)]

9 / 10

Proof of Rule 3 Back to Rules

▶ A simple way to see this is

ŷt ≈ ln(yt)− ln(y) = ln(f (xt))− ln(f (x))≈
[

ln(f (x))+
f ′(x)
f (x)

(xt − x)
]
− ln(f (x)

=
f ′(x)
f (x)

(xt − x) =
x f ′(x)
f (x)

x̂t

▶ We can also consider f (xt) =
g(xt)
h(xt)

=⇒ ln(f (xt)) = ln(g(xt))− ln(h(xt)). So

ln(f (xt)) = ln(f (x))+
f ′(x)
f (x)

(xt − x) ln(g(xt)) = ln(g(x))+
g′(x)
g(x)

(xt − x)

ln(h(xt)) = ln(h(x))+
h′(x)
h(x)

(xt − x)

▶ Combing these taylor expansions with ln(f (xt)) = ln(g(xt))− ln(h(xt)) yields
f ′(x)
f (x)

(xt − x) =
g′(x)
g(x)

(xt − x)− h′(x)
h(x)

(xt − x) =⇒ x f ′(x)
f (x)

x̂t =
xg′(x)
g(x)

x̂t −
xh′(x)
h(x)

x̂t

10 / 10

