Macro-7020: TA Session 1

Paul Bousquet
University of Virginia

August 2023

Taylor Expansion

- Taylor's theorem tells us the following

$$
f\left(x_{t}\right)=f(x)+f^{\prime}(x)\left(x_{t}-x\right)+\frac{f^{(2)}(x)}{2!}\left(x_{t}-x\right)^{2}+\frac{f^{(3)}(x)}{3!}\left(x_{t}-x\right)^{3}+\ldots
$$

where the expansion is considered "at x "

- usually we expand around the steady state $\left(x^{*}\right)$ in the context of Macro
- For smooth functions, the magnitude of the terms dissipates quickly with n
- So the bumbling idiots in economics usually feel they can simply write

$$
f\left(x_{t}\right)=f(x)+f^{\prime}(x)\left(x_{t}-x\right) \text { and } f\left(x_{t}, y_{t}\right)=f(x, y)+f_{x}(x, y)\left(x_{t}-x\right)+f_{y}(x, y)\left(y_{t}-y\right)
$$

where equality is imposed but it's really an approximation.

Log(-)Linearization

- The usual definition for a (log) linearized variable is $\widehat{x}_{t}=\frac{x_{t}-x}{x}$
- Think about this as relative deviation from the steady state.
- Value: non-relative numbers are arbitrary. Also, cycles and shocks.
- First order Taylor expansion about $\widehat{x}_{t}=0$

$$
\ln \left(1+\widehat{x}_{t}\right) \approx \ln (1)+\left(\left.\frac{\mathrm{d}}{\mathrm{~d} \widehat{x}_{t}} \ln \left(1+\widehat{x}_{t}\right)\right|_{\widehat{x}_{t}=0}\right)\left(\widehat{x}_{t}-0\right)=\left(\left.\frac{1}{1+\widehat{x}_{t}}\right|_{\widehat{x}_{t}=0}\right) \widehat{x}_{t}=\widehat{x}_{t}
$$

"valid" since we consider \widehat{x}_{t} to be small in magnitude

- So now consider the following property, which is extremely useful

$$
\widehat{x}_{t} \approx \ln \left(1+\widehat{x}_{t}\right)=\ln \left(1+\frac{x_{t}-x}{x}\right)=\ln \left(\frac{x_{t}}{x}\right)=\ln \left(x_{t}\right)-\ln (x)
$$

Still Log-Linearizing

- Now we have $\widehat{x}_{t} \approx \ln \left(x_{t}\right)-\ln (x)$. So for instance

$$
y_{t}=x_{t} z_{t} \Longrightarrow \widehat{y}_{t} \approx \ln \left(y_{t}\right)-\ln (y)=\left(\ln \left(x_{t}\right)+\ln \left(z_{t}\right)\right)-(\ln (x)-\ln (z)) \approx \widehat{x}_{t}+\widehat{z}_{t}
$$

This gives us the first in several rules

- $y_{t}=x_{t} z_{t} \Longrightarrow \widehat{y}_{t}=\widehat{x}_{t}+\widehat{z}_{t}$
- $y_{t}=x_{t}^{\alpha} \Longrightarrow \widehat{y}_{t}=\alpha \widehat{x_{t}}$
- $y_{t}=f\left(x_{t}\right) \Longrightarrow \widehat{y}_{t}=\left[\frac{f^{\prime}(x)}{f(x)} x\right] \widehat{x}_{t} \quad$ function rule
- $y_{t}=x_{t}+z_{t} \Longrightarrow y \widehat{y}_{t}=x \widehat{x}_{t}+z \widehat{z}_{t} \quad$ sum rule
- These are: incredibly useful, all you need, and (mostly) transparent
- Implicit, (mathematically) trivial, but important rule: linearized constant $=0$
- Rule 3 Proof •Appendix

The Brutal Truth about LL..

- Taylor series expansions in econ are not about mathematical precision
- Jensen's inequality? Never heard of her
- Write equality signs. Just do it.
- The last slide I went from \approx to $=$ when writing "rules". I'm never going back
- For this year, don't worry. But for future: "does this matter?" is good for research
- To add onto the ingrained grainyness..
- "black box": people say log-linearize and magically a solution appears
- Because there's lots of messy math behind the scenes, can be hard to implement
- I have been taught a ton of different ways to do this over the years. Here are in my opinion the best two: rule based and brute force

Method 1: Rule Based (or The Method of Big Hat)

- Intuitive and step by step: just apply the rules over and over
- $y_{t}=x_{t} z_{t} \Longrightarrow \widehat{y}_{t}=\widehat{x}_{t}+\widehat{z}_{t}$
- $y_{t}=x_{t}^{\alpha} \Longrightarrow \widehat{y}_{t}=\alpha \widehat{x_{t}}$
- $y_{t}=f\left(x_{t}\right) \Longrightarrow \widehat{y}_{t}=\left[\frac{f^{\prime}(x)}{f(x)} x\right] \widehat{x}_{t}$
- $y_{t}=x_{t}+z_{t} \Longrightarrow y \widehat{y}_{t}=x \widehat{x}_{t}+z \widehat{z}_{t}$
- Example: Consider $k_{t+1}=(1-\delta) k_{t}+s A_{t} k_{t}^{\alpha}$. This means

$$
\begin{aligned}
\widehat{k}_{t+1} & =\frac{(1-\delta) k}{k}\left(\widehat{1-\delta)} k_{t}+\frac{s A k^{\alpha} \widehat{s A_{t} k_{t}^{\alpha}}}{k}\right. & & \text { Rule 4 } \\
& =(1-\delta)\left[\widehat{(1-\delta)}+\widehat{k}_{t}\right]+s A k^{\alpha-1}\left(\widehat{s}+\widehat{A}_{t}+\widehat{k}_{t}^{\alpha}\right) & & \text { Rule } 1 \\
& =(1-\delta) \widehat{k}_{t}+s A k^{\alpha-1}\left(\widehat{A}_{t}+\alpha \widehat{k}_{t}\right) & & \text { Rule 2 }
\end{aligned}
$$

- key is treating entire term as one linearized variable and then "shrinking the hat"

Method 2: Brute Force

- Just compute (some intuition from Taylor but gets fuzzy when thinking about constants)

$$
0=f\left(x_{t}, y_{t}, z_{t}\right) \Longrightarrow 0=f_{x}(x, y, z) x \widehat{x}_{t}+f_{y}(x, y, z) y \widehat{y}_{t}+f_{z}(x, y, z) z \widehat{z}_{t}
$$

- Breaking this down: set everything equal to 0 . Call this expression $f(\ldots)$
- Say you have k variables $\left\{x_{i, t}\right\}_{i=1}^{k}$
- Log-linearizing is

$$
0=\sum_{i=1}^{k} f_{x_{i}}(\mathrm{ss}) \cdot x_{i} \widehat{x}_{i, t}
$$

- Each term: partial derivative of f w.r.t x_{i} evaluated at the steady states $\left(x_{1}, \ldots, x_{k}\right)$ multiplied by $x_{i} \cdot \widehat{x}_{i, t}$ (steady state x_{i} times linearized $x_{i, t}$)
- Returning to our $k_{t+1}=(1-\boldsymbol{\delta}) k_{t}+s A_{t} k_{t}^{\alpha}$ example (so $0=-k_{t+1}+(1-\boldsymbol{\delta}) k_{t}+s A_{t} k_{t}^{\alpha}$)

$$
\begin{gathered}
0=-1 \times k \widehat{k}_{t+1}+\left(1-\delta+\alpha s A k^{\alpha-1}\right) \times k \widehat{k}_{t}+s k^{\alpha} \times A \widehat{A}_{t} \\
\Longrightarrow \widehat{k}_{t+1}=(1-\delta) \widehat{k}_{t}+s A k^{\alpha-1}\left(\widehat{A}_{t}+\alpha \widehat{k}_{t}\right)
\end{gathered}
$$

Which method do I use?

- Try on your own and see what your brain likes best
- For most people, brute force will be best (cleaner)
- But always remember the rules! Brute force can be cumbersome in simple cases
- Say you want to linearize δx_{t}
- Rules-based immediately gives you \widehat{x}_{t} (just use product rule)
- Remember: "hat" treats all objects equally. Can't think about constants until it's isolated
- Brute force only really makes sense with an equation. So you have to redefine $y_{t}=\delta x_{t}$

$$
\Longrightarrow 0=-y \widehat{y}_{t}+\delta x \widehat{x}_{t}
$$

and then you have to realize/recognize the steady state of y_{t} is δx

- "Realizing" is often an essential simplifying step and source of struggle with LL

Practice!

- For reference, recall: $0=\sum_{i=1}^{k} f_{x_{i}}(\mathrm{ss}) \cdot x_{i} \widehat{x}_{i, t}$
- $y_{t}=x_{t} z_{t} \Longrightarrow \widehat{y}_{t}=\widehat{x}_{t}+\widehat{z}_{t}$
- $y_{t}=x_{t}^{\alpha} \Longrightarrow \widehat{y}_{t}=\alpha \widehat{x}_{t}$
$y_{t}=f\left(x_{t}\right) \Longrightarrow \widehat{y}_{t}=\left[\frac{f^{\prime}(x)}{f(x)} x\right] \widehat{x}_{t}$
$y_{t}=x_{t}+z_{t} \Longrightarrow y \widehat{y}_{t}=x \widehat{x}_{t}+z \widehat{z}_{t}$

1. $y_{t}=-x_{t}$
2. $y_{t}=\left(x_{t}+\beta z_{t}\right)^{\alpha}$
3. $c_{t}+k_{t+1}-(1-\delta) k_{t}=A_{t} k_{t}^{\alpha} \ell_{t}^{1-\alpha}$
4. How does \#3 simplify if you know steady states $c=\gamma k$ and $A, \ell=1$
5. $c_{t+1}=\beta\left[c_{t}\left(\alpha A_{t} k_{t+1}^{\alpha-1}+1-\delta\right)\right]$

Proof of Rule 3 , backto Rules

- A simple way to see this is

$$
\begin{aligned}
\widehat{y}_{t} \approx \ln \left(y_{t}\right)-\ln (y)=\ln \left(f\left(x_{t}\right)\right)-\ln (f(x)) & \approx\left[\ln (f(x))+\frac{f^{\prime}(x)}{f(x)}\left(x_{t}-x\right)\right]-\ln (f(x) \\
& =\frac{f^{\prime}(x)}{f(x)}\left(x_{t}-x\right)=\frac{x f^{\prime}(x)}{f(x)} \widehat{x}_{t}
\end{aligned}
$$

- We can also consider $f\left(x_{t}\right)=\frac{g\left(x_{t}\right)}{h\left(x_{t}\right)} \Longrightarrow \ln \left(f\left(x_{t}\right)\right)=\ln \left(g\left(x_{t}\right)\right)-\ln \left(h\left(x_{t}\right)\right)$. So

$$
\begin{gathered}
\ln \left(f\left(x_{t}\right)\right)=\ln (f(x))+\frac{f^{\prime}(x)}{f(x)}\left(x_{t}-x\right) \quad \ln \left(g\left(x_{t}\right)\right)=\ln (g(x))+\frac{g^{\prime}(x)}{g(x)}\left(x_{t}-x\right) \\
\ln \left(h\left(x_{t}\right)\right)=\ln (h(x))+\frac{h^{\prime}(x)}{h(x)}\left(x_{t}-x\right)
\end{gathered}
$$

- Combing these taylor expansions with $\ln \left(f\left(x_{t}\right)\right)=\ln \left(g\left(x_{t}\right)\right)-\ln \left(h\left(x_{t}\right)\right)$ yields

$$
\frac{f^{\prime}(x)}{f(x)}\left(x_{t}-x\right)=\frac{g^{\prime}(x)}{g(x)}\left(x_{t}-x\right)-\frac{h^{\prime}(x)}{h(x)}\left(x_{t}-x\right) \Longrightarrow \frac{x f^{\prime}(x)}{f(x)} \widehat{x}_{t}=\frac{x g^{\prime}(x)}{g(x)} \widehat{x}_{t}-\frac{x h^{\prime}(x)}{h(x)} \widehat{x}_{t}
$$

